SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 1 trang 70 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Cho các mệnh đề:

P: “Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt”;

Q: “Phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức\(\Delta  = {b^2} - 4ac > 0\)”. 

a) Hãy phát biểu các mệnh đề: P => Q, Q => P, P ⇔ Q,  => . Xét tính đúng sai của các mệnh đề này.

b) Dùng các khái niệm "điều kiện cần” và "điều kiện đủ” để diễn tả mệnh đề  P => Q.

c) Gọi X là tập hợp các phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt, Y là tập hợp các phương trình bậc hai \(a{x^2} + bx + c\) có hệ số a và c trái dấu. Nêu mối quan hệ giữa hai tập hợp X và Y.

Lời giải chi tiết

a)               

+ Mệnh đề P => Q: Nếu phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt thì nó có biệt thức \(\Delta  = {b^2} - 4ac > 0\). Mệnh đề này đúng.

+ Mệnh đề Q => P: Nếu phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức \(\Delta  = {b^2} - 4ac > 0\) thì nó có hai nghiệm phân biệt. Mệnh đề này đúng.

+ Mệnh đề P ⇔ Q: Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt khi và chỉ khi nó có có biệt thức \(\Delta  = {b^2} - 4ac > 0\). Mệnh đề này đúng.

+ Mệnh đề : Phương trình bậc hai \(a{x^2} + bx + c\) không có hai nghiệm phân biệt thì nó có biệt thức \(\Delta  = {b^2} - 4ac > 0\). Mệnh đề này đúng.

b) + Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt là điều kiện đủ để nó có biệt thức \(\Delta  = {b^2} - 4ac > 0\)

+ Phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức \(\Delta  = {b^2} - 4ac > 0\) là điều kiện cần để nó có hai nghiệm phân biệt

c) Các phương trình bậc hai \(a{x^2} + bx + c\) có hệ số a và c trái dấu thì luôn có 2 nghiệm trái dấu.

 Vậy \(Y \subset X\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved