PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 10 trang 101 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) có \(AB > AC.\) Trên cạnh \(AB\) lấy một điểm \(D\) sao cho \(AD = AC.\) Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(DBC.\) Từ \(O\) lần lượt hạ các đường thẳng vuông góc \(OH,\) \(OK\) xuống \(BC\) và \(BD\) (\(H \in BC,K \in BD\)).

\(a)\) Chứng minh rằng \(OH < OK.\)

\(b)\) So sánh hai cung nhỏ \(BD\) và \(BC.\) 

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một tam giác, độ dài một cạnh lớn hơn hiệu độ dài hai cạnh còn lại.

+) Trong một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

+) Với hai cung nhỏ trong một đường tròn, dây lớn hơn căng cung lớn hơn.

Lời giải chi tiết

 

\(a)\) Trong \(∆ABC\) ta có:

\(BC > AB – AC\) (bất đẳng thức tam giác)

Mà \(AC = AD \;\; (gt)\)

\( \Rightarrow  BC > AB – AD\)

Hay \(BC > BD\)

Trong \((O)\) ta có: \(BC > BD\)

\( \Rightarrow OH < OK\) (dây lớn hơn gần tâm hơn)

\(b)\) Ta có dây cung \(BC > BD\)

Suy ra: \(\overparen{BC}\) > \(\overparen{BD}\) (dây lớn hơn căng cung lớn hơn).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved