Giải bài 10 trang 13 SBT toán 7 - Chân trời sáng tạo

Đề bài

Một tam giác có ba cạnh tỉ lệ với 5; 12; 13 và có chu vi là 120 cm. Tính độ dài các cạnh của tam giác đó.

 

 

Phương pháp giải - Xem chi tiết

Bước 1: Lập được tỉ lệ thức từ dữ kiện đề bài.

Bước 2: Áp dụng tính chất của dãy tỉ số bằng nhau.

\(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}} = \frac{{a - c + e}}{{b - d + f}}\) (với \(b + d + f \ne 0,\,b - d + f \ne 0\)).

 

 

Lời giải chi tiết

Gọi độ dài các cạnh của tam giác đó lần lượt là x, y, z (\(x,y,z > 0\))

Theo bài ta có: Độ dài ba cạnh tỉ lệ với 5; 12; 13 do đó \(\frac{x}{5} = \frac{y}{{12}} = \frac{z}{{13}}\)

Chu vi tam giác đó là 120 cm, do đó \(x + y + z = 120\) (cm).

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{x}{5} = \frac{y}{{12}} = \frac{z}{{13}} = \frac{{x + y + z}}{{5 + 12 + 13}} = \frac{{120}}{{30}} = 4\).

Suy ra \(\frac{x}{5} = 4 \Rightarrow x = 20\)(cm) ; \(\frac{y}{{12}} = 4 \Rightarrow y = 48\)(cm); \(\frac{z}{{13}} = 4 \Rightarrow z = 52\)(cm)

Vậy độ dài các cạnh của tam giác đó lượt là 20 cm; 48 cm; 52 cm

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved