Đề bài
Chứng minh các đẳng thức sau đunggs với mọi \(n \in \mathbb{N}*\):
a) \(1 + 2C_n^1 + 4C_n^2 + ... + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = {3^n}\)
b) \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + ... + C_{2n}^{2n - 1}\)
Phương pháp giải - Xem chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết
a) Áp dụng công thức nhị thức Newton, ta có:
\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)
Thay \(x = 2\) ta được:
\({3^n} = C_n^0 + C_n^1.2 + C_n^2{2^2} + ... + C_n^n{2^n}\)
Hay \(1 + 2C_n^1 + 4C_n^2 + ... + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = {3^n}\)
b) Áp dụng công thức nhị thức Newton, ta có:
\({(1 + x)^{2n}} = C_{2n}^0 + C_{2n}^1x + C_{2n}^2{x^2} + ... + C_{2n}^{2n}{x^{2n}}\)
Thay \(x = - 1\) ta được:
\({(1 + \left( { - 1} \right))^{2n}} = C_{2n}^0 + C_{2n}^1.\left( { - 1} \right) + C_{2n}^2{\left( { - 1} \right)^2} + ... + C_{2n}^{2n}{\left( { - 1} \right)^{2n}}\)
Hay \(C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - ... - C_{2n}^{2n - 1} + C_{2n}^{2n} = 0\)
Hay \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + ... + C_{2n}^{2n - 1}\)
Review (Units 5 - 6)
Chủ đề 2. Lực và chuyển động
Chủ đề 1. Mô tả chuyển động
Chương III. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chủ đề 1: Nền kinh tế và các chủ thể của nền kinh tế
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10