Đề bài
Viết khai triển nhị thức Newton của \({(3x - 2)^n}\), biết n là số tự nhiên thoả mãn \(A_n^2 + 2C_n^1 = 30\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Lời giải chi tiết
Ta có \(A_n^2 + 2C_n^1 = 30 \Leftrightarrow \frac{{n!}}{{(n - 2)!}} + 2\frac{{n!}}{{1!(n - 1)!}} = 30\)
\(\begin{array}{l} \Leftrightarrow n(n - 1) + 2n - 30 = 0\\ \Leftrightarrow {n^2} + n - 30 = 0\end{array}\)
\( \Leftrightarrow n = 5\) (thỏa mãn) hoặc \(n = - 6\) (loại)
Khi đó \(\begin{array}{l}{(3x - 2)^n} = {(3x - 2)^5}\\ = {(3x)^5} + 5{(3x)^4}.( - 2) + 10{(3x)^3}{( - 2)^2} + 10{(3x)^2}{( - 2)^3} + 5.3x{( - 2)^4} + {( - 2)^5}\\ = 243{x^5} - 810{x^4} + 1080{x^3} - 720{x^2} + 240x - 32\end{array}\)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Tiếng Anh lớp 10
Phần mở đầu
Chữ người tử tù
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 10 - Chân trời sáng tạo
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10