Giải bài 10 trang 75 SBT toán 10 - Cánh diều

Đề bài

Một cây cao bị nghiêng so với mặt đất góc 780. Từ vị trí C cách gốc cây 20 m, người ta tiến hành đo đạc và thu được kết quả \(\widehat {ACB} = {50^0}\) với B là vị trí ngọn cây (Hình 10). Tính khoảng cách từ gốc cây (điểm A) đến ngọn cây (điểm B) (làm tròn kết quả đến hàng phần mười theo đơn vị mét)

Phương pháp giải - Xem chi tiết

Tính góc B và sử dụng định lí sin để tính độ dài cạnh AB của ∆ABC rồi kết luận

Lời giải chi tiết

Ta có: \(\widehat B = {180^0} - (\widehat A + \widehat C) = {52^0}\)

Áp dụng định lí sin cho ∆ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} \Rightarrow AB = \frac{{AC.\sin C}}{{\sin B}} = \frac{{20.\sin {{50}^0}}}{{\sin {{52}^0}}} \approx 19,4\)

Vậy khoảng cách từ gốc cây đến ngọn cây là 19,4 m

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved