Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.
Lời giải chi tiết
Đặt độ dài \(AB = a,\) \(BC = b,\) \( CD = c,\) \(AD = d\)
Gọi \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\)
Trong \(∆OAB,\) ta có:
\(OA + OB > a\) (bất đẳng thức tam giác)\( (1)\)
Trong \(∆OCD\) ta có:
\(OC + OD > c\) (bất đẳng thức tam giác)\( (2)\)
Từ \((1)\) và \((2)\) suy ra:
\(OA + OB + OC + OD > a + c\)
Hay \(AC + BD > a + c \;\;(*)\)
Trong \(∆OAD\) ta có: \(OA + OD > d\) (bất đẳng thức tam giác) \((3)\)
Trong \(∆OBC\) ta có: \(OB + OC > b\) (bất đẳng thức tam giác) \((4)\)
Từ \((3)\) và \((4)\) suy ra: \(OA + OD + OB + OC > b + d\)
\(⇒ AC + BD > b + d \;\;(**)\)
Từ \((*)\) và \((**)\) suy ra: \(2(AC + BD) > a + b + c + d\)
\(⇒ AC + BD > \displaystyle {{a + b + c + d} \over 2}\)
Trong \(∆ABC\) ta có: \(AC < AB + BC = a + b\) (bất đẳng thức tam giác)
Trong \(∆ADC\) ta có: \(AC < AD + DC = c + d\) (bất đẳng thức tam giác)
Suy ra: \(2AC < a + b + c + d\)
\(AC < \displaystyle {{a + b + c + d} \over 2}\) \((5)\)
Trong \(∆ABD\) ta có: \(BD < AB + AD = a + d\) (bất đẳng thức tam giác)
Trong \(∆BCD\) ta có: \(BD < BC + CD = b + c\) (bất đẳng thức tam giác)
Suy ra: \(2BD < a + b + c + d\)
\(BD < \displaystyle {{a + b + c + d} \over 2}\) \((6)\)
Từ \((5)\) và \((6)\) suy ra: \(AC + BD < a + b + c + d\)
Vậy \(\displaystyle {{a + b + c + d} \over 2}\)
Unit 5. Teenagers' life
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Khoa học tự nhiên lớp 8
Unit 1. Free time
Chủ đề 2. Khám phá bản thân
Unit 4. A teenager's life
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8