Đề bài
Cho \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho \(AB = 1\). Độ dài lớn nhất của đoạn OB bằng:
A. 1,5
B. \(\sqrt 3 \)
C. \(2\sqrt 2 \)
D. 2
Phương pháp giải - Xem chi tiết
Áp dụng định lí sin trong tam giác OAB để tính OB.
Lời giải chi tiết
Ta có: \(\frac{{AB}}{{\sin O}} = \frac{{OB}}{{\sin A}} \Rightarrow OB = \sin A.\frac{1}{{\sin {{30}^ \circ }}} = 2\sin A \le 2\)
Dấu bằng xảy ra khi \(\sin A = 1\) hay \(AB \bot Oy\)
Chọn D.
Đề thi giữa kì 1
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chương 9: Nguồn lực phát triển kinh tế, một số tiêu chí đánh giá sự phát triển kinh tế
Review (Units 5 - 6)
Chương 4. Phản ứng oxi hóa - khử
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10