Câu hỏi 10 - Mục Bài tập trang 96

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b

Cho tam giác ABC có M, N là hai điểm lần lượt thuộc các cạnh AB, AC sao cho \(MN\parallel BC\). Gọi I, P, Q lần lượt là giao điểm của BN và CM, AI và MN, AI và BC. Chứng minh:

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b

Lời giải phần a

1. Nội dung câu hỏi

\(\frac{{MP}}{{BQ}} = \frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\)

 

2. Phương pháp giải

Dựa vào định lý Thales để suy ra các cặp tỉ số bằng nhau.

 

3. Lời giải chi tiết

 Vì \(MP\parallel BQ\) nên ta có \(\frac{{MP}}{{BQ}} = \frac{{AP}}{{AQ}}\) (Định lý Thales)                                                                                                     

Vì \(PN\parallel QC\) nên ta có \(\frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\) (Định lý Thales)

\( \Rightarrow \frac{{MP}}{{BQ}} = \frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\)

Lời giải phần b

1. Nội dung câu hỏi

\(\frac{{MP}}{{QC}} = \frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\)

 

2. Phương pháp giải

Dựa vào định lý Thales để suy ra các cặp tỉ số bằng nhau.

 

3. Lời giải chi tiết

Vì \(MP\parallel QC\) nên \(\frac{{MP}}{{QC}} = \frac{{IP}}{{IQ}}\) (Hệ quả của định lý Thales)

Vì \(PN\parallel BQ\) nên \(\frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\) (Hệ quả của định lý Thales)

\( \Rightarrow \frac{{MP}}{{QC}} = \frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved