1. Nội dung câu hỏi
Người ta dùng thuốc để khử khuẩn cho một thùng nước. Biết rằng nếu lúc đầu mỗi mililít nước chứa \({P_o}\) vi khuẩn thì sau t giờ (kể từ khi cho thuốc vào thùng), số lượng vi khuẩn trong mỗi mililít nước là \(P = {P_o}{.10^{ - \alpha t}}\), với \(\alpha \) là một hằng số dương nào đó. Biết rằng ban đầu mỗi mililít nước có 9 000 vi khuẩn và sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 6 000. Sau thời gian bao lâu thì số lượng vi khuẩn trong mỗi mililít nước trong thùng ít hơn hoặc bằng 1 000?
2. Phương pháp giải
Sử dụng kiến thức về giải phương trình mũ cơ bản để giải phương trình:
\({a^x} = b\left( {a > 0,a \ne 1} \right)\)
+ Nếu \(b \le 0\) thì phương trình vô nghiệm.
+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\)
Chú ý: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
3. Lời giải chi tiết
Với \(P = 6\;000,{P_o} = 9\;000,t = 2\) ta có: \(6\;000 = 9\;{000.10^{ - 2\alpha }} \Leftrightarrow \alpha = \frac{{ - 1}}{2}\log \frac{2}{3} = \frac{1}{2}\log \frac{3}{2}\)
Để số lượng vi khuẩn trong mỗi mililít nước trong thùng ít hơn hoặc bằng 1 000 thì: \(9\;{000.10^{ - \alpha t}} \le 1\;000 \Leftrightarrow {10^{ - \alpha t}} \le \frac{1}{9} \Leftrightarrow - \alpha t \le \log \frac{1}{9}\)
\( \Leftrightarrow t \ge \frac{{ - 2}}{\alpha }\log \frac{1}{3} = \frac{{ - 2}}{{\frac{1}{2}\log \frac{3}{2}}}.\log \frac{1}{3} = \frac{{4\log 3}}{{\log \frac{3}{2}}} \approx 10,8\) (giờ).
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Unit 2: Get well
Chương 6. Hidrocacbon không no
Chủ đề 2: Kĩ thuật chuyền bóng - nhảy dừng bắt bóng, xoay chân trụ - nhảy ném rổ
Chủ đề 4. Trách nhiệm với gia đình
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11