1. Nội dung câu hỏi
Xét tính tăng, giảm của mỗi dãy số \(\left( {{u_n}} \right)\) sau:
a) \({u_n} = 2n + 3\)
b) \({u_n} = {3^n} - n\)
c) \({u_n} = \frac{{\sqrt n }}{{{2^n}}}\)
d) \({u_n} = \sin n\)
2. Phương pháp giải
Sử dụng các cách xác định dãy số tăng hay giảm: Cho dãy số \(\left( {{u_n}} \right)\).
Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(H < 0\), dãy số \(\left( {{u_n}} \right)\) tăng khi \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(T < 1\), dãy số \(\left( {{u_n}} \right)\) khi \(T > 1\) với \(\forall n \in {\mathbb{N}^*}\).
3. Lời giải chi tiết
a) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \left[ {2\left( {n + 1} \right) + 3} \right] - \left( {2n + 3} \right) = \left( {2n + 5} \right) - \left( {2n + 3} \right) = 2 > 0\)
Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 3\) là dãy số tăng.
b) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \left[ {{3^{n + 1}} - \left( {n + 1} \right)} \right] - \left( {{3^n} - n} \right) = \left( {{3^{n + 1}} - {3^n}} \right) - \left( {n + 1} \right) + n\)
\( = {3^n}\left( {3 - 1} \right) - 1 = {2.3^n} - 1\).
Ta thấy \({2.3^n} - 1 \ge {2.3^1} - 1 = 4 > 0\) với \(\forall n \in {\mathbb{N}^*}\), nên \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3^n} - n\) là dãy số tăng.
c) Ta nhận thấy với \(\forall n \in {\mathbb{N}^*}\) thì \({u_n} = \frac{{\sqrt n }}{{{2^n}}} > 0\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 1} }}{{{2^{n + 1}}}}:\frac{{\sqrt n }}{{{2^n}}} = \frac{{\sqrt {n + 1} }}{{{2^{n + 1}}}}.\frac{{{2^n}}}{{\sqrt n }} = \frac{1}{2}\sqrt {\frac{{n + 1}}{n}} = \sqrt {\frac{{n + 1}}{{4n}}} \).
Ta thấy \(3n - 1 > 0 \Rightarrow 4n - 1 > n \Rightarrow 4n > n + 1 \Rightarrow \frac{{n + 1}}{{4n}} < 1 \Rightarrow \sqrt {\frac{{n + 1}}{{4n}}} < 1\), suy ra \(T < 1\) với \(\forall n \in {\mathbb{N}^*}\).
Do đó dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\sqrt n }}{{{2^n}}}\) là dãy số giảm.
d) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \sin \left( {n + 1} \right) - \sin n = 2\cos \frac{{n + 1 + n}}{2}\sin \frac{{n + 1 - n}}{2} = 2\cos \frac{{2n + 1}}{2}\sin \frac{1}{2}\)
Với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định dấu của \(\cos \frac{{2n + 1}}{2}\), tức là ta không thể kết luận \(H > 0\) hay \(H < 0\).
Vậy dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sin n\) không là dãy số tăng, cũng không là dãy số giảm.
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
PHẦN HAI: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI
Unit 4: Global Warming
Ngóng gió đông - Nguyễn Đình Chiểu
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11