Trả lời câu hỏi 11 - Mục câu hỏi trắc nghiệm trang 46

1. Nội dung câu hỏi

Xét tính tăng, giảm của mỗi dãy số \(\left( {{u_n}} \right)\) sau:

a) \({u_n} = 2n + 3\)                                           

b) \({u_n} = {3^n} - n\)

c) \({u_n} = \frac{{\sqrt n }}{{{2^n}}}\)                                                  

d) \({u_n} = \sin n\)


2. Phương pháp giải

Sử dụng các cách xác định dãy số tăng hay giảm: Cho dãy số \(\left( {{u_n}} \right)\).

Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(H < 0\), dãy số \(\left( {{u_n}} \right)\) tăng khi \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(T < 1\), dãy số \(\left( {{u_n}} \right)\) khi \(T > 1\) với \(\forall n \in {\mathbb{N}^*}\).

 

3. Lời giải chi tiết

a) Xét hiệu:

\(H = {u_{n + 1}} - {u_n} = \left[ {2\left( {n + 1} \right) + 3} \right] - \left( {2n + 3} \right) = \left( {2n + 5} \right) - \left( {2n + 3} \right) = 2 > 0\)

Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 3\) là dãy số tăng.

b) Xét hiệu:

\(H = {u_{n + 1}} - {u_n} = \left[ {{3^{n + 1}} - \left( {n + 1} \right)} \right] - \left( {{3^n} - n} \right) = \left( {{3^{n + 1}} - {3^n}} \right) - \left( {n + 1} \right) + n\)

\( = {3^n}\left( {3 - 1} \right) - 1 = {2.3^n} - 1\).

Ta thấy \({2.3^n} - 1 \ge {2.3^1} - 1 = 4 > 0\) với \(\forall n \in {\mathbb{N}^*}\), nên \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3^n} - n\) là dãy số tăng.

c) Ta nhận thấy với \(\forall n \in {\mathbb{N}^*}\) thì \({u_n} = \frac{{\sqrt n }}{{{2^n}}} > 0\).

Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 1} }}{{{2^{n + 1}}}}:\frac{{\sqrt n }}{{{2^n}}} = \frac{{\sqrt {n + 1} }}{{{2^{n + 1}}}}.\frac{{{2^n}}}{{\sqrt n }} = \frac{1}{2}\sqrt {\frac{{n + 1}}{n}}  = \sqrt {\frac{{n + 1}}{{4n}}} \).

Ta thấy \(3n - 1 > 0 \Rightarrow 4n - 1 > n \Rightarrow 4n > n + 1 \Rightarrow \frac{{n + 1}}{{4n}} < 1 \Rightarrow \sqrt {\frac{{n + 1}}{{4n}}}  < 1\), suy ra \(T < 1\) với \(\forall n \in {\mathbb{N}^*}\).

Do đó dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\sqrt n }}{{{2^n}}}\) là dãy số giảm.

d) Xét hiệu:

 \(H = {u_{n + 1}} - {u_n} = \sin \left( {n + 1} \right) - \sin n = 2\cos \frac{{n + 1 + n}}{2}\sin \frac{{n + 1 - n}}{2} = 2\cos \frac{{2n + 1}}{2}\sin \frac{1}{2}\)

Với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định dấu của \(\cos \frac{{2n + 1}}{2}\), tức là ta không thể kết luận \(H > 0\) hay \(H < 0\).

Vậy dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sin n\) không là dãy số tăng, cũng không là dãy số giảm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved