PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 11 trang 6 SBT toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Bằng quy tắc nhân, tìm giá trị gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ ba (dùng máy tính bỏ túi để tính toán). 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(2x = \sqrt {13} \) 

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\(2x = \sqrt {13} \)

\( \displaystyle \Leftrightarrow \dfrac{2x}{2} = {{\sqrt {13} } \over 2} \)

\( \displaystyle \Leftrightarrow x = {{\sqrt {13} } \over 2} \Leftrightarrow x \approx 1,803\)

LG b

 \( - 5x = 1 + \sqrt 5 \)

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\( - 5x = 1 + \sqrt 5 \)

\( \displaystyle\Leftrightarrow \dfrac{-5x}{-5} =  - {{1 + \sqrt 5 } \over 5}\)

\( \displaystyle\Leftrightarrow x =  - {{1 + \sqrt 5 } \over 5} \Leftrightarrow x \approx  - 0,647\)

LG c

\( x\sqrt 2  = 4\sqrt 3 \)

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\(x\sqrt 2  = 4\sqrt 3 \)

\( \displaystyle\Leftrightarrow \dfrac{x\sqrt 2}{\sqrt 2} = {{4\sqrt 3 } \over {\sqrt 2 }}\)

\( \displaystyle\Leftrightarrow x = {{4\sqrt 3 } \over {\sqrt 2 }} \Leftrightarrow x \approx 4,899\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved