1. Nội dung câu hỏi
Tam giác \(O{A_1}{A_2}\) vuông cân tại \({A_2}\) có cạnh huyền \(O{A_1}\) bằng a. Bên ngoài tam giác \(O{A_1}{A_2}\), vẽ tam giác \(O{A_2}{A_3}\) vuông cân tại \({A_3}\). Tiếp theo, bên ngoài tam giác \(O{A_2}{A_3}\), vẽ tam giác \(O{A_3}{A_4}\) vuông cân tại \({A_4}\). Cứ tiếp tục quá trình như trên, ta vẽ được một dãy các hình tam giác vuông cân (Hình 2). Tính độ dài đường gấp khúc \({A_1}{A_2}{A_3}{A_4}...\)
2. Phương pháp giải
Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính độ dài đường gấp khúc: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)
3. Lời giải chi tiết
Ta có các góc \(\widehat {{A_1}O{A_2}},\widehat {{A_2}O{A_3}},\widehat {{A_3}O{A_4}},...\) đều bằng \({45^0}\).
Lại có: \({A_1}{A_2} = O{A_2} = O{A_1}.\cos {45^0} = a\frac{{\sqrt 2 }}{2}\);
\({A_2}{A_3} = O{A_3} = O{A_2}.\cos {45^0} = a\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\);
\({A_3}{A_4} = O{A_4} = O{A_3}.\cos {45^0} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}.\frac{{\sqrt 2 }}{2} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^3}\);…
Vậy độ dài các đoạn thẳng \({A_1}{A_2},{A_2}{A_3},{A_3}{A_4}...\) tạo thành cấp số nhân lùi vô hạn với số hạng đầu bằng \(a\frac{{\sqrt 2 }}{2}\) và công bội bằng \(\frac{{\sqrt 2 }}{2}\). Do đó, độ dài đường gấp khúc \({A_1}{A_2}{A_3}{A_4}...\) là: \(l = \frac{{a\sqrt 2 }}{2}.\frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = \frac{{a\sqrt 2 }}{{2 - \sqrt 2 }} = \frac{{a\sqrt 2 }}{2}\left( {2 + \sqrt 2 } \right) = a\left( {1 + \sqrt 2 } \right)\).
Tiếng Anh 11 mới tập 2
Chương III. Các phương pháp gia công cơ khí
CHƯƠNG IV. SINH SẢN - SINH HỌC 11
Chuyên đề 3: Một số vấn đề về pháp luật lao động
Chương III. Điện trường
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11