SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 11 - Mục Bài tập trang 76

1. Nội dung câu hỏi

Tam giác \(O{A_1}{A_2}\) vuông cân tại \({A_2}\) có cạnh huyền \(O{A_1}\) bằng a. Bên ngoài tam giác \(O{A_1}{A_2}\), vẽ tam giác \(O{A_2}{A_3}\) vuông cân tại \({A_3}\). Tiếp theo, bên ngoài tam giác \(O{A_2}{A_3}\), vẽ tam giác \(O{A_3}{A_4}\) vuông cân tại \({A_4}\). Cứ tiếp tục quá trình như trên, ta vẽ được một dãy các hình tam giác vuông cân (Hình 2). Tính độ dài đường gấp khúc \({A_1}{A_2}{A_3}{A_4}...\)


2. Phương pháp giải

Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính độ dài đường gấp khúc: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)

 

3. Lời giải chi tiết 

Ta có các góc \(\widehat {{A_1}O{A_2}},\widehat {{A_2}O{A_3}},\widehat {{A_3}O{A_4}},...\) đều bằng \({45^0}\).

Lại có: \({A_1}{A_2} = O{A_2} = O{A_1}.\cos {45^0} = a\frac{{\sqrt 2 }}{2}\);

\({A_2}{A_3} = O{A_3} = O{A_2}.\cos {45^0} = a\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\);

\({A_3}{A_4} = O{A_4} = O{A_3}.\cos {45^0} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}.\frac{{\sqrt 2 }}{2} = a{\left( {\frac{{\sqrt 2 }}{2}} \right)^3}\);…

Vậy độ dài các đoạn thẳng \({A_1}{A_2},{A_2}{A_3},{A_3}{A_4}...\) tạo thành cấp số nhân lùi vô hạn với số hạng đầu bằng \(a\frac{{\sqrt 2 }}{2}\) và công bội bằng \(\frac{{\sqrt 2 }}{2}\). Do đó, độ dài đường gấp khúc \({A_1}{A_2}{A_3}{A_4}...\) là: \(l = \frac{{a\sqrt 2 }}{2}.\frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = \frac{{a\sqrt 2 }}{{2 - \sqrt 2 }} = \frac{{a\sqrt 2 }}{2}\left( {2 + \sqrt 2 } \right) = a\left( {1 + \sqrt 2 } \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved