1. Nội dung câu hỏi
Tìm giá trị của các tham số a và b, biết rằng:
a) \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = 5\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x + b}}{{x - 1}} = 3\).
2. Phương pháp giải
Sử dụng kiến thức về giới hạn hữu hạn của hàm số để tìm a, b.
3. Lời giải chi tiết
a) Do \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right) = 0\) nên để tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = 5\) thì \(\mathop {\lim }\limits_{x \to 2} \left( {ax + b} \right) = 0\) hay \(2a + b = 0 \Rightarrow b = - 2a\)
Khi đó, \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{ax - 2a}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{a\left( {x - 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} a = a\)
Mà \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = 5 \Rightarrow a = 5\). Suy ra: \(b = 2.\left( { - 5} \right) = - 10\).
b) Do \(\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\) nên để tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x + b}}{{x - 1}} = 3\) thì \(\mathop {\lim }\limits_{x \to 1} \left( {a\sqrt x + b} \right) = 0\) hay \(a + b = 0 \Rightarrow b = - a\)
Khi đó, \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x + b}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x - a}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{a\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{a}{{\sqrt x + 1}} = \frac{a}{2}\)
Mà \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x + b}}{{x - 1}} = 3 \Rightarrow \frac{a}{2} = 3 \Rightarrow a = 6\). Suy ra: \(b = - 6\).
Tải 20 đề kiểm tra 15 phút - Chương 3
Chủ đề 5. Xây dựng cộng đồng văn minh
Unit 5: Heritage sites
CHƯƠNG I - ĐIỆN TÍCH ĐIỆN TRƯỜNG
CHƯƠNG III: DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11