1. Nội dung câu hỏi
Không sử dụng máy tính, tính các giá trị lượng giác của góc \({105^0}\).
2. Phương pháp giải
Áp dụng công thức cộng, tách góc 105\(^0\) ra thành 2 góc có giá trị lượng giác đặc biệt là 60\(^0\) và 45\(^0\)
\(\cos (a + b) = \cos a\cos b - \sin a\sin b\)
\(\sin (a + b) = \sin a\cos b + \cos a\sin b\)
Áp dụng công thức \({\mathop{\rm tanx}\nolimits} = \frac{{sinx}}{{\cos x}}\) để tính \(\tan x\).
Áp dụng công thức \({\mathop{\rm cotx}\nolimits} = \frac{1}{{\tan x}}\) để tính \(\cot \,x\).
3. Lời giải chi tiết
\(\begin{array}{l}\cos {105^0} = \cos ({60^0} + {45^0}) = \cos 60{\,^0}\cos {45^0} - \sin {60^0}\sin {45^0}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}.\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 - \sqrt 6 }}{4}.\\\sin {105^0} = \sin ({60^0} + {45^0}) = \sin 60{\,^0}\cos {45^0} - \cos {60^0}\sin {45^0}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}.\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 + \sqrt 6 }}{4}.\end{array}\)
\(\tan {105^0} = \frac{{\sin {{105}^0}}}{{\cos {{105}^0}}} = \frac{{\frac{{\sqrt 2 - \sqrt 6 }}{4}}}{{\frac{{\sqrt 2 + \sqrt 6 }}{4}}} = \frac{{\sqrt 2 - \sqrt 6 }}{{\sqrt 2 + \sqrt 6 }}\).
\(\cot {105^0} = \frac{1}{{\tan {{105}^0}}} = 1:\frac{{\sqrt 2 - \sqrt 6 }}{{\sqrt 2 + \sqrt 6 }} = \frac{{\sqrt 2 + \sqrt 6 }}{{\sqrt 2 - \sqrt 6 }}\).
Câu hỏi tự luyện Sinh 11
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 11
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
Tải 10 đề kiểm tra 15 phút - Chương VI - Hóa học 11
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11