Đề bài
Tập xác định của hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3 - \tan x}}\) là
A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\}\)
B. \(\mathbb{R}\backslash \left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right)\)
C. \(\mathbb{R}\backslash \left\{ {\left\{ {\dfrac{\pi }{3} + k2\pi } \right\} \cup \left\{ {\dfrac{\pi }{2} + k2\pi } \right\}} \right\}\)
D. \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)
Phương pháp giải - Xem chi tiết
Hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\).
Hàm số \(y = \sqrt {f(x)} \) xác định khi \(f(x) \ge 0\).
Lời giải chi tiết
Hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3 - \tan x}}\) không xác định khi
\(\left\{ \begin{array}{l}1 - 2\cos x < 0\\\tan x = \sqrt 3 \\\cos x = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{\pi }{3} + k2\pi < x < \dfrac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\end{array} \right.\)
Vậy tập xác định là \(\) \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)
Đáp án: D.
Cách trắc nghiệm.
Xét các phương án
Với x = π/3 thì tan x = √3 nên hàm số không xác định, do đó các phương án A và B bị loại.
Với x=0 thì \(1 - 2\cos 0 = - 1 < 0\) nên hàm số không xác định, mà x=0 lại thuộc tập hợp đáp án C nên loại C.
Chủ đề 3: Kĩ thuật nhảy ném rổ và chiến thuật tấn công trong bóng rổ
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
Unit 5: Cities and education in the future
Chủ đề 5. Một số cuộc cải cách trong lịch sử Việt Nam (trước năm 1858)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11