Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Trong mặt phẳng \(Oxy\), cho hai điểm \(I(1;2)\), \(M(-2;3)\), đường thẳng \(d\) có phương trình \(3x-y+9=0\) và đường tròn \((C)\) có phương trình: \(x^2+y^2+2x-6y+6=0\). Hãy xác định tọa độ của điểm \(M’\), phương trình của đường thẳng \(d’\) và đường tròn \((C’)\) theo thứ tự là ảnh của \(M\), \(d\) và \((C)\) qua
LG a
Phép đối xứng qua gốc tọa độ;
Phương pháp giải:
Sử dụng biểu thức tọa độ của tâm đối xứng:
Trong mặt phẳng tọa độ \(Oxy\), cho \(I=(x_0; y_0)\), gọi \(M=(x;y)\) và \(M’=(x’;y’)\) là ảnh của \(M\) qua phép đối xứng tâm \(I\). Khi đó \(\left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\)
Trong bài này tâm đối xứng là \(O(0;0)\) nên \(\left\{ \begin{array}{l}x' = - x\\y' = - y\end{array} \right.\)
Lời giải chi tiết:
Gọi \(M’\),\(d’\) và \((C’)\) theo thứ tự là ảnh của \(M\), \(d\)và \((C)\) qua phép đối xứng qua \(O\).
M(-2;3) nên \(M’=(2;-3)\)
Biểu thức tọa độ của phép đối xứng qua gốc tọa độ là:
\(\left\{ \begin{array}{l}x' = - x\\y' = - y\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
x = - x'\\
y = - y'
\end{array} \right.\)
Phương trình của \(d’\): \(3(-x)-(-y)+9=0\)\(\Leftrightarrow 3x-y-9=0\)
Phương trình của đường tròn \((C’): {(-x)}^2+{(-y)}^2+2(-x)-6(-y)+6=0\) \(\Leftrightarrow (C’): x^2+y^2-2x+6y+6=0\)
LG b
Phép đối xứng qua tâm \(I\).
Phương pháp giải:
Sử dụng biểu thức tọa độ của tâm đối xứng:
Trong mặt phẳng tọa độ \(Oxy\), cho \(I=(x_0; y_0)\), gọi \(M(x;y)\) và \(M’(x’;y’)\) là ảnh của \(M\) qua phép đối xứng tâm \(I\). Khi đó \(\left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\)
Lời giải chi tiết:
Gọi \(M’\),\(d’\) và \(C’\) theo thứ tự là ảnh của \(M\), \(d\) và \(C\) qua phép đối xứng qua \(I\).
Vì \(I\) là trung điểm của \(MM'\) nên \(M’=(4;1)\)
Vì \(d’\) song song với \(d\) nên \(d’\) có phương trình \(3x-y+C=0\). Lấy một điểm trên \(d\), chẳng hạn \(N(0;9)\).
Khi đó ảnh của \(N\) qua phép đối xứng qua tâm \(I\) là \(N’(2;-5)\).
Vì \(N’\) thuộc \(d\) nên ta có \(3.2-(-5)+C=0\). Từ đó suy ra \(C=-11\).
Vậy phương trình của \(d’\) là \(3x-y-11=0\).
Để tìm \((C’)\), trước hết ta để ý rằng \((C)\) là đường tròn tâm \(J(-1;3)\), bán kính bằng \(2\).
Ảnh của \(J\) qua phép đối xứng qua tâm \(I\) là \(J’(3;1)\).
Do đó \((C’)\) là đường tròn tâm \(J’\) bán kính bằng \(2\).
Phương trình của \((C’)\) là \({(x-3)}^2+{(y-1)}^2=4\).
Chương 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Cumulative Review
Bài 9: Tiết 1: Tự nhiên, dân cư và tình hình phát triển kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Bài 11: Tiết 3: Hiệp hội các nước Đông Nam Á (ASEAN) - Tập bản đồ Địa lí 11
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11