1. Nội dung câu hỏi
Tính giá trị các biểu thức sau:
a) \(A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\);
b) \(B = \sin {6^0}\sin {42^0}\sin {66^0}\sin {78^0}\).
2. Phương pháp giải
Áp dụng công thức biến đổi tổng thành tích và công thức góc lượng giác liên quan:
\(\sin a + \sin b = 2\sin \left( {\frac{{a + b}}{2}} \right)\cos \left( {\frac{{a - b}}{2}} \right)\)
\(\sin (\pi - a) = \sin a\).
3. Lời giải chi tiết
a)
\(\begin{array}{l}A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\\A = \left( {\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}} \right) - \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = 2\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right)\cos \left( {\frac{{\frac{{7\pi }}{9} - \frac{\pi }{9}}}{2}} \right) - \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = 2\sin \left( {\frac{{4\pi }}{9}} \right)\cos \frac{\pi }{3} - \sin \frac{{5\pi }}{9} = 2\sin \left( {\frac{{4\pi }}{9}} \right).\frac{1}{2} - \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = \sin \left( {\frac{{4\pi }}{9}} \right) - \sin \frac{{5\pi }}{9} = \sin \left( {\pi - \frac{{4\pi }}{9}} \right) - \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = \sin \frac{{5\pi }}{9} - \sin \frac{{5\pi }}{9} = 0.\end{array}\)
b) Vì $\sin {{78}^{0}}=\cos {{12}^{0}};\sin {{66}^{0}}=\cos {{24}^{0}};\sin {{42}^{0}}=\cos {{48}^{0}}$ nên
$B=\sin {{6}^{0}}.\cos {{12}^{0}}.\cos {{24}^{0}}.\cos {{48}^{0}}$.
Nhân hai vế với cos60 và áp dụng công thức nhân đôi, ta được:
cos60.B = cos60.$\sin {{6}^{0}}.\cos {{12}^{0}}.\cos {{24}^{0}}.\cos {{48}^{0}}$ = $\frac{1}{16}.\sin {{96}^{0}}$
$=\frac{1}{16}\sin ({{90}^{0}}+{{6}^{0}})=\frac{1}{16}\cos {{6}^{0}}$.
Vậy B = $\frac{1}{16}$.
Unit 2: Get well
Tải 10 đề thi giữa kì 1 Sinh 11
Chủ đề 3. Rèn luyện bản thân
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11