Giải các phương trình:
LG a
\(\sin 3x =-\dfrac{\sqrt{3}}{2}\)
Phương pháp giải:
Phương trình \(\sin x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là
\(x=\arcsin a+k2\pi ,k \in \mathbb{Z}\)
và \(x=\pi-\arcsin a+k2\pi ,k \in \mathbb{Z}\)
Lời giải chi tiết:
Ta có: \(-\dfrac{\sqrt{3}}{2}=\sin(\arcsin(-\dfrac{\sqrt{3}}{2}))\)
\(=\sin (-\dfrac{\pi}{3})\)
Khi đó: \(\sin 3x=\sin (-\dfrac{\pi}{3})\)
\(\Leftrightarrow \left[ \begin{array}{l} 3x = -\dfrac{\pi}{3}+k2\pi ,k \in \mathbb{Z}\\3x= \pi-({-\dfrac{\pi}{3}})+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l} x = -\dfrac{\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\\ x=\dfrac{4\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\end{array} \right. \)
Vậy phương trình có các nghiệm là:
\(x = -\dfrac{\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\) và \(x=\dfrac{4\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\)
LG b
\(\sin (2x-15^o)=\dfrac{\sqrt{2}}{2}\)
Phương pháp giải:
Phương trình \(sin x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\sin\beta^o=a\)
trong đó \(\beta^o=\arcsin a\)
Khi đó phương trình có nghiệm là \(x=\beta^o+k{360}^o ,k \in \mathbb{Z}\)
và \(x={180}^o-\beta^o+k{360}^o ,k \in \mathbb{Z}\)
Lời giải chi tiết:
Ta có: \(\dfrac{\sqrt{2}}{2}=\sin ({45}^o)\)
Khi đó: \(\sin(2x-{15}^o)=\sin ({45}^o)\)
\(\Leftrightarrow \left[ \begin{array}{l}2x-{15}^o = {45}^o+k{360}^o ,k \in \mathbb{Z}\\ 2x-{15}^o = {135}^o+k{360}^o ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l}x = {30}^o+k{180}^o ,k \in \mathbb{Z}\\ x = {75}^o+k{180}^o ,k \in \mathbb{Z}\end{array} \right. \)
Vậy nghiệm của phương trình là:
\(x = {30}^o+k{180}^o ,k \in \mathbb{Z}\) và \(x = {75}^o+k{180}^o ,k \in \mathbb{Z}\)
LG c
\(\sin (\dfrac{x}{2}+10^o)=-\dfrac{1}{2}\)
Phương pháp giải:
Phương trình \(sin x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\sin\beta^o=a\)
trong đó \(\beta^o=\arcsin a\)
Khi đó phương trình có nghiệm là \(x=\beta^o+k{360}^o ,k \in \mathbb{Z}\)
và \(x={180}^o-\beta^o+k{360}^o ,k \in \mathbb{Z}\)
Lời giải chi tiết:
Ta có: \(-\dfrac{1}{2}=\sin (-{30}^o)\)
Khi đó: \(\sin(\dfrac{x}{2}+{10}^o)=\sin (-{30}^o)\)
\(\Leftrightarrow \left[ \begin{array}{l}\dfrac{x}{2}+{10}^o = -{30}^o+k{360}^o ,k \in \mathbb{Z}\\ \dfrac{x}{2}+{10}^o = {210}^o+k{360}^o ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l}x = -{80}^o+k{720}^o ,k \in \mathbb{Z}\\ x = {400}^o+k{720}^o ,k \in \mathbb{Z}\end{array} \right. \)
Vậy nghiệm của phương trình là:
\(x = -{80}^o+k{720}^o ,k \in \mathbb{Z}\)
và \( x = {400}^o+k{720}^o ,k \in \mathbb{Z}\)
LG d
\(\sin 4x=\dfrac{2}{3}\).
Phương pháp giải:
Phương trình \(sin x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) có \(\alpha\) thỏa mãn \(\sin\alpha=a\)
trong đó \(\alpha=\arcsin a\)
Khi đó phương trình có nghiệm là \(x=\arcsin a+k2\pi ,k \in \mathbb{Z}\)
và \(x=\pi-\arcsin a+k2\pi ,k \in \mathbb{Z}\)
Lời giải chi tiết:
Ta có: \(\dfrac{2}{3}=\sin(\arcsin\dfrac{2}{3})\)
Khi đó: \(\sin 4x=\sin(\arcsin\dfrac{2}{3})\)
\(\Leftrightarrow \left[ \begin{array}{l} 4x = \arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\\4x= \pi-\arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\end{array} \right. \)
Vậy phương trình có các nghiệm là:
\(x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)
và \(x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)
Phần hai. CÔNG DÂN VỚI CÁC VẤN ĐỀ CHÍNH TRỊ XÃ HỘI
Câu hỏi tự luyện Địa 11
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Bài 18: Hợp chất carbonyl
Đề minh họa số 3
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11