Bài 1.16 trang 19 SBT hình học 12

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,BC = b,AA' = c\). Gọi \(E\) và \(F\) lần lượt là những điểm thuộc cạnh \(BB'\) và \(DD'\) sao cho \(BE = \dfrac{1}{2}EB',DF = \dfrac{1}{2}FD'\). Mặt phẳng \(\left( {AEF} \right)\) chia khối hộp chữ nhật \(ABCD.A'B'C'D'\) thành hai khối đa diện \(\left( H \right)\) và \(\left( {H'} \right)\). Gọi \(\left( {H'} \right)\) là khối đa diện chứa đỉnh \(A'\). Hãy tính thể tích của \(\left( H \right)\) và tỉ số thể tích của \(\left( H \right)\) và \(\left( {H'} \right)\).

Phương pháp giải - Xem chi tiết

- Tính thể tích các khối đa diện, sử dụng phương pháp phân chia khối đa diện.

- Từ đó suy ra tỉ số.

Lời giải chi tiết

Gọi \(I = CC' \cap \left( {AEF} \right)\).

Vì \(\left\{ \begin{array}{l}\left( {AEF} \right) \cap \left( {ABB'A'} \right) = AE\\\left( {AEF} \right) \cap \left( {CDD'C'} \right) = FI\\\left( {ABB'A'} \right)//\left( {CDD'C'} \right)\end{array} \right.\) nên \(AE//FI\).

Tương tự \(AF//EI\) nên tứ giác \(AEIF\) là hình bình hành.

Trên cạnh \(CC'\) lấy điểm \(J\) sao cho \(CJ = DF\).

Dễ thấy \(FJ//CD//AB,\) \(FI = CD = AB\) nên \(ABJF\) là hình bình hành \( \Rightarrow AF//BJ,AF = BJ\).

Suy ra \(EI//BJ,EI = BJ\) hay \(EBJI\) là hình bình hành \( \Rightarrow BE = JI\).

Từ đó suy ra \(IJ = EB = DF = JC = \dfrac{c}{3}\)

Ta có \({S_{BCIE}} = \dfrac{1}{2}\left( {\dfrac{{c + 2c}}{3}} \right)b = \dfrac{{bc}}{2}\); \({S_{DCIF}} = \dfrac{1}{2}\left( {\dfrac{{c + 2c}}{3}} \right)a = \dfrac{{ac}}{2}\)

Nên \({V_{(H)}} = {V_{A.BCIE}} + {V_{A.DCIF}}\)\( = \dfrac{1}{3}.\dfrac{{bc}}{2}.a + \dfrac{1}{3}.\dfrac{{ac}}{2}.b = \dfrac{{abc}}{3}\)

Lại có \({V_{ABCD.A'B'C'D'}} = abc\) \( \Rightarrow {V_{(H')}} = \dfrac{2}{3}abc\)

\( \Rightarrow \dfrac{{{V_{(H)}}}}{{{V_{(H')}}}} = \dfrac{1}{2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved