ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 1.17 trang 24 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\cos 3x - \sin 2x = 0\)

Phương pháp giải:

Đưa phương trình về dạng \(\cos a=\cos b\)

Khi đó \(a=\pm b+k2\pi ,k\in\mathbb{Z}\).

Lời giải chi tiết:

Ta có: \(\cos 3x-\sin 2x=0\)

\(\Leftrightarrow\cos 3x=\sin 2x\)

\(\Leftrightarrow\cos 3x=\cos(\dfrac{\pi}{2}-2x)\)

\(\Leftrightarrow \left[ \begin{array}{l}
3x = \frac{\pi }{2} - 2x + k2\pi \\
3x = - \frac{\pi }{2} + 2x + k2\pi
\end{array} \right.\)

\(\Leftrightarrow\left[ \begin{array}{l}5x = \dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\\x = -\dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5},k\in\mathbb{Z} \\
x = - \frac{\pi }{2} + k2\pi ,k\in\mathbb{Z} 
\end{array} \right.\)

Vậy phương trình có nghiệm là: \(x = \dfrac{\pi}{10}+k\dfrac{2\pi}{5} ,k\in\mathbb{Z}\)

và \(x = -\dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\).

LG b

\(\tan x\tan 2x = -1\)

Phương pháp giải:

Tìm điều kiện xác định của \(\tan x\) và \(\tan 2x\) là \(\cos x\ne0\) và \(\cos 2x\ne0\)

Biến đổi \(\tan x=\dfrac{\ sin x}{\cos x}\)

Áp dụng công thức cosin của một hiệu: \(\cos (a-b)=\cos a\cos b+\sin a\sin b\)

Lời giải chi tiết:

ĐKXĐ: \(\left\{ \begin{array}{l} \cos x\ne0\\\cos 2x\ne0\end{array} \right. \)

Ta có: \(\tan x\tan 2x = -1\)

\(\Leftrightarrow \dfrac{\sin x}{\cos x}\dfrac{\sin 2x}{\cos 2x}=-1\)

\(\Rightarrow \sin x\sin 2x=-\cos x\cos 2x\)

\(\Leftrightarrow \cos x\cos 2x+\sin x\sin 2x=0\)

\(\Leftrightarrow \cos (2x-x)=0\)

\(\Leftrightarrow \cos x=0\)

Kết hợp với điều kiện khi đó phương trình vô nghiệm.

LG c

\(\sin 3x+\sin 5x = 0\)

Phương pháp giải:

Đưa phương trình về dạng \(\sin a=\sin b\)

Khi đó \(a=b+k2\pi ,k\in\mathbb{Z}\) và \(a=\pi-b+k2\pi ,k\in\mathbb{Z}\).

Lời giải chi tiết:

Ta có: \(\sin 3x+\sin 5x=0\)

\(\Leftrightarrow \sin 5x=-\sin 3x\)

\(\Leftrightarrow \sin 5x=\sin (-3x)\)

\(\Leftrightarrow \left[ \begin{array}{l} 5x = -3x+k2\pi ,k \in \mathbb{Z}\\5x= \pi-(-3x)+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
8x = k2\pi ,k \in \mathbb{Z} \\
2x = \pi + k2\pi ,k \in \mathbb{Z} 
\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l} x=k\dfrac{\pi}{4} ,k\in\mathbb{Z}\\x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\end{array} \right. \)

Vậy phương trình có nghiệm là:

\(x=k\dfrac{\pi}{4} ,k\in\mathbb{Z}\)

và \(x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\)

Cách khác:

sin3x + sin5x = 0

⇔ 2sin4x. cosx = 0

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\sin 4x = 0\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
4x = k\pi \\
x = \frac{\pi }{2} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{k\pi }}{4}, k\in\mathbb{Z}\\
x = \frac{\pi }{2} + k\pi , k\in\mathbb{Z} 
\end{array} \right.
\end{array}\)

LG d

\(\cot 2x\cot 3x= 1\).

Phương pháp giải:

Tìm điều kiện xác định của \(\cot 2x\) và \(\cot 3x\) là \(\sin 2x\ne0\) và \(\sin 3x\ne0\)

Biến đổi \(\cot x=\dfrac{\cos x}{\sin x}\)

Áp dụng công thức cosin của một tổng: \(\cos (a+b)=\cos a\cos b-\sin a\sin b\)

Tìm điều kiện xác định của \(\cot 2x\) và \(\cot 3x\) là \(\sin 2x\ne0\) và \(\sin 3x\ne0\)

Biến đổi \(\cot x=\dfrac{\cos x}{\sin x}\)

Áp dụng công thức cosin của một tổng: \(\cos (a+b)=\cos a\cos b-\sin a\sin b\)

Lời giải chi tiết:

ĐKXĐ: \(\left\{ \begin{array}{l} \sin 2x\ne0\\\sin 3x\ne0\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} 2x\ne m\pi ,m\in\mathbb{Z}\\3x\ne m\pi ,m\in\mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} x\ne m\dfrac{\pi}{2} ,m\in\mathbb{Z}\\x\ne m\dfrac{\pi}{3} ,m\in\mathbb{Z}\end{array} \right. \)

Ta có: \(\cot 2x\cot 3x = 1\)

\(\Leftrightarrow \dfrac{\cos 2x}{\sin 2x}\dfrac{\cos 3x}{\sin 3x}=1\)

\(\Rightarrow \cos 2x\cos 3x=\sin 2x\sin 3x\)

\(\Leftrightarrow \cos 2x\cos 3x-\sin 2x\sin 3x=0\)

\(\Leftrightarrow \cos (2x+3x)=0\)

\(\Leftrightarrow \cos 5x=0\)

\(\Leftrightarrow 5x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\)

\(\Leftrightarrow x=\dfrac{\pi}{10}+k\dfrac{\pi}{5} ,k\in\mathbb{Z}\)

Với điều kiện ở trên khi đó:

\(\Leftrightarrow\left\{ \begin{array}{l} \dfrac{\pi}{10}+k\dfrac{\pi}{5}\ne m\dfrac{\pi}{2} ,m\in\mathbb{Z}\\\dfrac{\pi}{10}+k\dfrac{\pi}{5}\ne m\dfrac{\pi}{3} ,m\in\mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} k\ne\dfrac{5m-1}{2} ,m\in\mathbb{Z}\\k\ne\dfrac{10m-3}{6} ,m\in\mathbb{Z}\end{array} \right. \)

Vậy phương trình có nghiệm \(x=\dfrac{\pi}{10}+k\dfrac{\pi}{5} ,k\in\mathbb{Z}\)

với \(k\ne\dfrac{5m-1}{2}\) và \(k\ne\dfrac{10m-3}{6}\)  \(m\in\mathbb{Z}\).

Chú ý:

Một cách loại nghiệm khác như sau:

Với k = 2 + 5m, m ∈ Z thì

\(\begin{array}{l}
x = \frac{\pi }{{10}} + \left( {2 + 5m} \right).\frac{\pi }{5}\\
= \frac{\pi }{{10}} + \frac{{2\pi }}{5} + m\pi \\
= \frac{\pi }{2} + m\pi
\end{array}\)

nên k = 2 + 5m không thỏa mãn điều kiện xác định.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved