Giải các phương trình
LG a
\(\cos 3x - \sin 2x = 0\)
Phương pháp giải:
Đưa phương trình về dạng \(\cos a=\cos b\)
Khi đó \(a=\pm b+k2\pi ,k\in\mathbb{Z}\).
Lời giải chi tiết:
Ta có: \(\cos 3x-\sin 2x=0\)
\(\Leftrightarrow\cos 3x=\sin 2x\)
\(\Leftrightarrow\cos 3x=\cos(\dfrac{\pi}{2}-2x)\)
\(\Leftrightarrow \left[ \begin{array}{l}
3x = \frac{\pi }{2} - 2x + k2\pi \\
3x = - \frac{\pi }{2} + 2x + k2\pi
\end{array} \right.\)
\(\Leftrightarrow\left[ \begin{array}{l}5x = \dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\\x = -\dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\end{array} \right.\)
\(\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5},k\in\mathbb{Z} \\
x = - \frac{\pi }{2} + k2\pi ,k\in\mathbb{Z}
\end{array} \right.\)
Vậy phương trình có nghiệm là: \(x = \dfrac{\pi}{10}+k\dfrac{2\pi}{5} ,k\in\mathbb{Z}\)
và \(x = -\dfrac{\pi}{2}+k2\pi ,k\in\mathbb{Z}\).
LG b
\(\tan x\tan 2x = -1\)
Phương pháp giải:
Tìm điều kiện xác định của \(\tan x\) và \(\tan 2x\) là \(\cos x\ne0\) và \(\cos 2x\ne0\)
Biến đổi \(\tan x=\dfrac{\ sin x}{\cos x}\)
Áp dụng công thức cosin của một hiệu: \(\cos (a-b)=\cos a\cos b+\sin a\sin b\)
Lời giải chi tiết:
ĐKXĐ: \(\left\{ \begin{array}{l} \cos x\ne0\\\cos 2x\ne0\end{array} \right. \)
Ta có: \(\tan x\tan 2x = -1\)
\(\Leftrightarrow \dfrac{\sin x}{\cos x}\dfrac{\sin 2x}{\cos 2x}=-1\)
\(\Rightarrow \sin x\sin 2x=-\cos x\cos 2x\)
\(\Leftrightarrow \cos x\cos 2x+\sin x\sin 2x=0\)
\(\Leftrightarrow \cos (2x-x)=0\)
\(\Leftrightarrow \cos x=0\)
Kết hợp với điều kiện khi đó phương trình vô nghiệm.
LG c
\(\sin 3x+\sin 5x = 0\)
Phương pháp giải:
Đưa phương trình về dạng \(\sin a=\sin b\)
Khi đó \(a=b+k2\pi ,k\in\mathbb{Z}\) và \(a=\pi-b+k2\pi ,k\in\mathbb{Z}\).
Lời giải chi tiết:
Ta có: \(\sin 3x+\sin 5x=0\)
\(\Leftrightarrow \sin 5x=-\sin 3x\)
\(\Leftrightarrow \sin 5x=\sin (-3x)\)
\(\Leftrightarrow \left[ \begin{array}{l} 5x = -3x+k2\pi ,k \in \mathbb{Z}\\5x= \pi-(-3x)+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)
\( \Leftrightarrow \left[ \begin{array}{l}
8x = k2\pi ,k \in \mathbb{Z} \\
2x = \pi + k2\pi ,k \in \mathbb{Z}
\end{array} \right.\)
\(\Leftrightarrow \left[ \begin{array}{l} x=k\dfrac{\pi}{4} ,k\in\mathbb{Z}\\x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\end{array} \right. \)
Vậy phương trình có nghiệm là:
\(x=k\dfrac{\pi}{4} ,k\in\mathbb{Z}\)
và \(x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\)
Cách khác:
sin3x + sin5x = 0
⇔ 2sin4x. cosx = 0
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\sin 4x = 0\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
4x = k\pi \\
x = \frac{\pi }{2} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{k\pi }}{4}, k\in\mathbb{Z}\\
x = \frac{\pi }{2} + k\pi , k\in\mathbb{Z}
\end{array} \right.
\end{array}\)
LG d
\(\cot 2x\cot 3x= 1\).
Phương pháp giải:
Tìm điều kiện xác định của \(\cot 2x\) và \(\cot 3x\) là \(\sin 2x\ne0\) và \(\sin 3x\ne0\)
Biến đổi \(\cot x=\dfrac{\cos x}{\sin x}\)
Áp dụng công thức cosin của một tổng: \(\cos (a+b)=\cos a\cos b-\sin a\sin b\)
Tìm điều kiện xác định của \(\cot 2x\) và \(\cot 3x\) là \(\sin 2x\ne0\) và \(\sin 3x\ne0\)
Biến đổi \(\cot x=\dfrac{\cos x}{\sin x}\)
Áp dụng công thức cosin của một tổng: \(\cos (a+b)=\cos a\cos b-\sin a\sin b\)
Lời giải chi tiết:
ĐKXĐ: \(\left\{ \begin{array}{l} \sin 2x\ne0\\\sin 3x\ne0\end{array} \right. \)
\(\Leftrightarrow\left\{ \begin{array}{l} 2x\ne m\pi ,m\in\mathbb{Z}\\3x\ne m\pi ,m\in\mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow\left\{ \begin{array}{l} x\ne m\dfrac{\pi}{2} ,m\in\mathbb{Z}\\x\ne m\dfrac{\pi}{3} ,m\in\mathbb{Z}\end{array} \right. \)
Ta có: \(\cot 2x\cot 3x = 1\)
\(\Leftrightarrow \dfrac{\cos 2x}{\sin 2x}\dfrac{\cos 3x}{\sin 3x}=1\)
\(\Rightarrow \cos 2x\cos 3x=\sin 2x\sin 3x\)
\(\Leftrightarrow \cos 2x\cos 3x-\sin 2x\sin 3x=0\)
\(\Leftrightarrow \cos (2x+3x)=0\)
\(\Leftrightarrow \cos 5x=0\)
\(\Leftrightarrow 5x=\dfrac{\pi}{2}+k\pi ,k\in\mathbb{Z}\)
\(\Leftrightarrow x=\dfrac{\pi}{10}+k\dfrac{\pi}{5} ,k\in\mathbb{Z}\)
Với điều kiện ở trên khi đó:
\(\Leftrightarrow\left\{ \begin{array}{l} \dfrac{\pi}{10}+k\dfrac{\pi}{5}\ne m\dfrac{\pi}{2} ,m\in\mathbb{Z}\\\dfrac{\pi}{10}+k\dfrac{\pi}{5}\ne m\dfrac{\pi}{3} ,m\in\mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow\left\{ \begin{array}{l} k\ne\dfrac{5m-1}{2} ,m\in\mathbb{Z}\\k\ne\dfrac{10m-3}{6} ,m\in\mathbb{Z}\end{array} \right. \)
Vậy phương trình có nghiệm \(x=\dfrac{\pi}{10}+k\dfrac{\pi}{5} ,k\in\mathbb{Z}\)
với \(k\ne\dfrac{5m-1}{2}\) và \(k\ne\dfrac{10m-3}{6}\) \(m\in\mathbb{Z}\).
Chú ý:
Một cách loại nghiệm khác như sau:
Với k = 2 + 5m, m ∈ Z thì
\(\begin{array}{l}
x = \frac{\pi }{{10}} + \left( {2 + 5m} \right).\frac{\pi }{5}\\
= \frac{\pi }{{10}} + \frac{{2\pi }}{5} + m\pi \\
= \frac{\pi }{2} + m\pi
\end{array}\)
nên k = 2 + 5m không thỏa mãn điều kiện xác định.
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Nghị luận xã hội lớp 11
Chủ đề 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Bài 11: Tiết 1: Tự nhiên, dân cư và xã hội khu vực Đông Nam Á - Tập bản đồ Địa lí 11
Bài 12: Alkane
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11