Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Cho hàm số \(y = f({x}) = 4 - \dfrac{2}{5}x\) với \(x \in R\).
Chứng minh rằng hàm số đã cho nghịch biến trên R.
Phương pháp giải - Xem chi tiết
- Tìm tập xác định (TXĐ) D của hàm số.
- Giả sử \({x_1} < {x_2}\) với (\({x_1};{x_2} \in D\)). Xét hiệu \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right).\)
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0\) hay \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\) thì hàm số đồng biến trên D.
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\) hay \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\) thì hàm số nghịch biến trên D.
Lời giải chi tiết
Với \({x_1};{x_2}\) là hai giá trị bất kì của \(x\) thuộc \(\mathbb R,\) ta có:
\(y_1 = f({x_1}) = 4 - \dfrac{2}{5}{x_1}\);
\(y_2 = f({x_2}) = 4 - \dfrac{2}{5}{x_2}\).
Nếu \({x_1} < {x_2}\) thì \({x_2} - {x_1} >0\). Khi đó ta có:
\(\begin{array}{l}
{y_1} - {y_2} = (4 - \dfrac{2}{5}{x_1}) - (4 - \dfrac{2}{5}{x_2})\\= 4 - \dfrac{2}{5}{x_1}- 4 + \dfrac{2}{5}{x_2}\\= \dfrac{2}{5}{x_2}- \dfrac{2}{5}{x_1}\\
= \dfrac{2}{5}({x_2} - {x_1}) > 0.
\end{array}\)
Suy ra \({y_1} > {y_2}.\)
Vậy hàm số đã cho là hàm số nghịch biến trên \(\mathbb R.\)
Bài 5
Đề thi vào 10 môn Văn Đồng Tháp
CHƯƠNG 2. KIM LOẠI
Đề thi vào 10 môn Văn Tây Ninh
Đề thi vào 10 môn Toán Cần Thơ