Câu hỏi 12 - Mục Bài tập trang 12

1. Nội dung câu hỏi

Chứng minh rằng biểu thức \(P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).

 

2. Phương pháp giải

Áp dụng các phương pháp cộng, trừ, nhân, chia đa thức để rút gọn biểu thức sau đó chứng minh biểu thức luôn nhận giá trị âm.

 

3. Lời giải chi tiết

Ta có:

 \(\begin{array}{l}P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\\ = 2xy + 2{y^2} - {x^2} - xy + xy - {x^2} - 2xy - 10{y^2} - 1\\ =  - 2{x^2} - 8{y^2} - 1\end{array}\)

Do \({x^2} \ge 0,{y^2} \ge 0\) nên \( - 2{x^2} - 8{y^2} - 1 < 0\) với mọi giá trị của biến \(x,y\).

Vậy \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved