Đề bài
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD của tam giác OAB (D thuộc đoạn AB).
a) Tính OA, OB,
b) Chứng minh rằng \(\overrightarrow {OD} = \frac{2}{3}\overrightarrow {OA} + \frac{1}{3}\overrightarrow {OB} \)
c) Tìm toạ độ điểm D.
Lời giải chi tiết
a) Ta có \(OA = \sqrt {{3^2} + {4^2}} = 5;OB = \sqrt {{8^2} + {6^2}} = 10\)
b) Theo tính chất đường phân giác ta có:
\(\frac{{AD}}{{BD}} = \frac{{OA}}{{OB}} = \frac{5}{{10}} = \frac{1}{2} \Rightarrow BD = 2AD\)
Do D thuộc AB nên \(\overrightarrow {AD} \) và \(\overrightarrow {BD} \) ngược hướng.
\(\begin{array}{l} \Rightarrow \overrightarrow {BD} = - 2\overrightarrow {AD} \\ \Leftrightarrow \overrightarrow {OD} - \overrightarrow {OB} = - 2\left( {\overrightarrow {OD} - \overrightarrow {OA} } \right)\\ \Leftrightarrow 3\overrightarrow {OD} = \overrightarrow {OB} + 2\overrightarrow {OA} \\ \Leftrightarrow \overrightarrow {OD} = \frac{1}{3}\overrightarrow {OB} + \frac{2}{3}\overrightarrow {OA} \end{array}\)
c) Gọi \(D({x_o};{y_o})\) từ b suy ra \(\;\left\{ \begin{array}{l}{x_o} = \frac{2}{3}{x_A} + \frac{1}{3}{x_B} = \frac{{14}}{3}\\{y_o} = \frac{2}{3}{y_A} + \frac{1}{3}{y_B} = \frac{{14}}{3}\end{array} \right.\)
Vậy \(D\left( {\frac{{14}}{3};\frac{{14}}{3}} \right)\)
Unit 9: Consumer society
Chương 10: Địa lí ngành nông nghiệp, lâm nghiệp, thủy sản
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục kinh tế và pháp luật lớp 10
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chủ đề 1. Nền kinh tế và các chủ thể của nền kinh tế
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10