1. Nội dung câu hỏi
Cho nửa đường tròn đường kính \(AB = 2\). Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\). Kí hiệu diện tích tam giác ABC là \(S\left( \alpha \right)\) (phụ thuộc vào \(\alpha \)). Xét tính liên tục của hàm số \(S\left( \alpha \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và tính các giới hạn \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right)\); \(\mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} S\left( \alpha \right)\)
2. Phương pháp giải
Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để tính: Hàm số \(y = \sin x\) liên tục trên \(\mathbb{R}\).
3. Lời giải chi tiết
\(S\left( \alpha \right) = \frac{1}{2}AC.BC = \frac{1}{2}.2\cos \alpha .2\sin \alpha = \sin 2\alpha ,\alpha \in \left( {0;\frac{\pi }{2}} \right)\).
Do hàm số \(y = \sin 2\alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha \right)\) liên tục trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\).
\(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {0^ + }} \sin 2\alpha = \sin 0 = 0\); \(\mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} \sin 2\alpha = \sin \left( {2.\frac{\pi }{2}} \right) = 0\).
Chương 2. Cảm ứng ở sinh vật
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Unit 11: Careers
Unit 10: Nature In Danger - Thiên nhiên đang lâm nguy
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Lịch sử lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11