Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục.
Phương pháp giải - Xem chi tiết
- Cho \(O\) và góc lượng giác \(\alpha\). Phép biến hình biến \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành điểm \(M’\) sao cho \(OM’=OM\) và góc lượng giác \((OM;OM’)\) bằng \(\alpha\) được gọi là phép quay tâm \(O\) góc \(\alpha\).
Lời giải chi tiết
Gọi \(Q_{(I,\alpha)}\) là phép quay tâm \(I\) góc \(\alpha\). Lấy đường thẳng \(d\) bất kì qua \(I\). Gọi \(d’\) là ảnh của \(d\) qua phép quay tâm \(I\) góc \(\dfrac{\alpha}{2}\). Lấy điểm \(M\) bất kì và gọi \(M’=Q_{(I,\alpha)}(M)\). Gọi \(M’’\) là ảnh của \(M\) qua phép đối xứng qua trục \(d\). \(M_1\) là ảnh của \(M’’\) qua phép đối xứng qua trục \(d’\). Gọi \(J\) là giao của \(MM’\) với \(d\), \(H\) là giao của \(M’’M_1\) với \(d’\).
Khi đó ta có đẳng thức giữa các góc lượng giác sau:
\((IM,IM_1)\)
\(=(IM,IM’’)+(IM’’,IM_1)\)
\(=2(IJ,IM’’)+2(IM’’,IH)\)
\(=2(IJ,IH)=2\dfrac{\alpha}{2}=\alpha=(IM,IM’)\)
Từ đó suy ra \(M’\equiv M_1\). Như vậy \(M’\) có thể xem là ảnh của \(M\) sau khi thực hiện liên tiếp hai phép đối xứng qua hai trục \(d\) và \(d’\).
Chủ đề 1. Xây dựng và phát triển nhà trường
Chương III. Điện trường
Unit 7: World Population - Dân số thế giới
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Tải 20 đề kiểm tra 15 phút - Chương 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11