1. Nội dung câu hỏi
Một con lắc lò xo dạo động điều hòa quanh vị trí cân bằng theo phương trình
ở đó \(y = 25\sin 4\pi t\), y được tính bằng centimet còn thời gian t được tính bằng giây.
a) Tìm chu kì dao động của con lắc lò xo.
b) Tìm tần số dao động của con lắc, tức là số lần dao động trong một giây.
c) Tìm khoảng cách giữa điểm cao nhất và điểm thấp nhất của con lắc.
2. Phương pháp giải
Chu kì dao động của hàm y = A.sin \(\omega \)x tìm dựa vào công thức \(T = \frac{{2\pi }}{\omega }\).
Tìm được chu kì, ta sẽ tìm được số dao động của con lắc trong 1 giây (tức tần số dao động).
Khoảng cách giữa điểm cao nhất và điểm thấp nhất của con lắc chính là 2 lần biên độ dao động A.
3. Lời giải chi tiết
a) Hàm số \(y = 25\sin 4\pi t\) tuần hoàn với chu kì \(T = \frac{{2\pi }}{{4\pi }} = \frac{1}{2}\). Suy ra chu kì dao động của con lắc lò xo (tức là khoảng thời gian để con lắc thực hiện được một dao động toàn phần) là \(T = \frac{1}{2}\) (giây).
b) Vì chu kì dao động của con lắc là \(T = \frac{1}{2}\) (giây) nên trong 1 giây con lắc thực hiện được 2 dao động, tức là tần số dao động của con lắc là \(f = \frac{1}{T} = 2\,{\rm{Hz}}\).
c) Vì phương trình dao động của con lắc là \(y = 25\sin 4\pi t\), nên biên độ dao động của nó là A=25cm. Từ đó, khoảng cách giữa điểm cao nhất và điểm thấp nhất của con lắc là 2A=50cm.
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Tiếp theo)
Unit 8: Conservation
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
SBT Ngữ văn 11 - Chân trời sáng tạo tập 2
Review 3
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11