Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(d\) có phương trình \(2x+y-4=0\).
LG a
Hãy viết phương trình của đường thẳng \(d_1\) là ảnh của \(d\) qua phép vị tự tâm \(O\) tỉ số \(k=3\).
Phương pháp giải:
Chọn hai điểm thuộc đường thẳng \(d\).
Tìm ảnh của hai điểm đó qua phép vị tự tâm \(O\) tỉ số \(k=3\).
Sử dụng tính chất:
- Giả sử \(M’\), \(N’\) theo thứ tự là ảnh của \(M\), \(N\) qua phép vị tự tỉ số \(k\) khi đó \(\vec{M’N’}=k\vec{MN}\).
Viết phương trình đường thẳng đi qua hai điểm ảnh đó. Đường thẳng đi qua hai điểm ảnh đó là đường thẳng phải tìm.
- Phương trình đường thẳng đi qua 2 điểm \(A(x_A;y_A)\), \(B(x_B;y_B)\) có dạng \(\dfrac{x-x_B}{x_A-x_B}=\dfrac{y-y_B}{y_A-y_B}\)
Lời giải chi tiết:
Lấy hai điểm \(A(0;4)\) và \(B(2;0)\) thuộc \(d\). Gọi \(A’\), \(B’\) theo thứ tự là ảnh của \(A\),\(B\) và qua phép vị tự tâm \(O\) tỉ số \(k=3\). Khi đó ta có \(\vec{OA’}=3\vec{OA}\), \(\vec{OB’}=3\vec{OB}\).
Vì \(\vec{OA}=(0;4)\) nên \(\vec{OA’}=(0;12)\). Do đó \(A’=(0;12)\). Tương tự \(B’=(6;0)\); \(d_1\) chính là đường thẳng \(A’B’\) nên nó có phương trình \(\dfrac{x-6}{-6}=\dfrac{y}{12}\) hay \(2x+y-12=0\).
LG b
Hãy viết phương trình của đường thẳng \(d_2\) là ảnh của \(d\) qua phép vị tự tâm \(I(-1;2)\) tỉ số \(k=-2\).
Phương pháp giải:
Sử dụng tính chất hai đường thẳng song song thì pháp tuyến đường thẳng này bằng \(k\) lần pháp tuyến đường thẳng kia \(k\ne 0\).
Sử dụng định nghĩa phép vị tự: Cho \(I\) và \(k\ne 0\). Phép biến hình biến điểm \(M\) thành điểm \(M’\) sao cho \(\vec{IM’}=k\vec{IM}\) được gội là phép vị tự tâm \(I\), tỉ số \(k\).
Lời giải chi tiết:
Vì \(d_2\parallel d\) nên phương trình của \(d_2\) có dạng: \(2x+y+C=0\). Gọi \(A’=(x’;y’)\) là ảnh của \(A\) qua phép vị tự đó thì ta có: \(\vec {IA’}=-2\vec{IA}\) hay \(x’+1=-2\), \(y’-2=-4\)
Suy ra \(x’=-3\)\(y’=-2\)
Do \(A’\) thuộc \(d_2\) nên \(2.(-3)-2+C=0\). Từ đó suy ra \(C=8\)
Phương trình của \(d_2\) là \(2x+y+8=0\).
Bài 1. Sự tương phản về trình độ phát triển kinh tế - xã hội của các nhóm nước. Cuộc cách mạng khoa học và công nghệ hiện đại - Tập bản đồ Địa lí 11
B
Chương II. Sóng
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục kinh tế và pháp luật lớp 11
Ngữ pháp
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11