Bài 1.24 trang 16 SBT giải tích 12

Đề bài

Chứng minh rằng hàm số: \(f(x) = \left\{ {\begin{array}{*{20}{c}}{ - 2x,\forall x \ge 0}\\{\sin \dfrac{x}{2},\forall x < 0}\end{array}} \right.\) không có đạo hàm tại \(x = 0\) nhưng đạt cực đại tại điểm đó.

Phương pháp giải - Xem chi tiết

- Xét sự tồn tại của giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và suy ra sự tồn tại của đạo hàm tại điểm \(x = 0\).

- Hàm số đạt cực đại tại \(x = 0\) nếu đạo hàm đổi dấu từ dương sang âm qua điểm đó.

Lời giải chi tiết

Hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{ - 2x;x \ge 0}\\{\sin \dfrac{x}{2};x < 0}\end{array}} \right.\) không có đạo hàm tại \(x = 0\) vì:

+) \(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{ - 2x}}{x} =  - 2\),

+) \(\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \) \(= \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{2.\dfrac{x}{2}}} = \dfrac{1}{2}\)

Vì \( - 2 \ne \frac{1}{2} \) \(\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{x}\)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{x}\) nên không có đạo hàm của hàm số tại \(x=0\).

Mặt khác, với \(x < 0\;\) thì \(y' = \dfrac{1}{2}\cos \dfrac{x}{2}\), với \(x > 0\) thì \(y' =  - 2 < 0\)

Xét trên đoạn \(\left[ { - \pi ;\pi } \right]\) ta có bảng biến thiên:

Từ đó ta thấy hàm số đạt cực đại tại \(x = 0\) và \({y_{CD}} = y\left( 0 \right) = 0\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved