ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 1.24 trang 25 SBT đại số và giải tích 11

Đề bài

Nghiệm lớn nhất của phương trình \(\sin 3x-\cos x=0\) thuộc đoạn \(\left[ { -\frac{{\pi }}{2} ;\frac{{3\pi }}{2}} \right]\) là

A. \(\dfrac{3\pi}{2}\)                B. \(\dfrac{4\pi}{3}\)

C. \(\dfrac{5\pi}{4}\)                D. \(\pi\).

Phương pháp giải - Xem chi tiết

Đưa phương trình về dạng \(\sin a=\sin b\)

Phương trình có các nghiệm là:

\(a = b+k2\pi ,k \in \mathbb{Z}\)

và \(a=\pi-b+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết

Ta có: \(\sin 3x-\cos x=0\)

\(\Leftrightarrow \sin 3x=\cos x\)

\(\Leftrightarrow \sin 3x=\sin (\dfrac{\pi}{2}-x)\)

\(\Leftrightarrow \left[ \begin{array}{l} 3x = \dfrac{\pi}{2}-x+k2\pi ,k \in \mathbb{Z}\\3x= \pi-(\dfrac{\pi}{2}-x)+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
4x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z} \\
2x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z} 
\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi}{8}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\\x=\dfrac{\pi}{4}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

Trong đoạn \(\left[ { -\frac{{\pi }}{2} ;\frac{{3\pi }}{2}} \right]\), với \(x=\dfrac{\pi}{8}+k\dfrac{\pi}{2}\) ta có 4 giá trị là \(-\dfrac{3\pi}{8}\), \(\dfrac{\pi}{8}\), \(\dfrac{5\pi}{8}\) và \(\dfrac{9\pi}{8}\) ứng với các giá trị \(k=-1\), \(0\), \(1\) và \(2\) trong đó \(\dfrac{9\pi}{8}\) là giá trị lớn nhất.

Với \(x=\dfrac{\pi}{4}+k\pi\) ta có 2 giá trị là \(\dfrac{\pi}{4}\) và\(\dfrac{5\pi}{4}\) ứng với các giá trị \(k=-1\), \(0\) và \(1\) trong đó \(\dfrac{5\pi}{4}\) là giá trị lớn nhất.

Vì \(\dfrac{5\pi}{4} > \dfrac{9\pi}{8}\) nên \(\dfrac{5\pi}{4}\) là nghiệm lớn nhất của phương trình trong \(\left[ { -\frac{{\pi }}{2} ;\frac{{3\pi }}{2}} \right]\)

Đáp án: C.

Cách trắc nghiệm:

Ta xét các giá trị từ lớn tới nhỏ trong các phương án.

Với giá trị lớn nhất 4π/3 trong phương án B, ta thấy sin3x = 0 nhưng cosx ≠ 0 nên phương án B bị loại.

Với giá trị x = 5π/3 trong phương án C thì sin3x = (-√2)/2, cos5π/3 = (-√2)/2 nên 5π/4 là nghiệm của phương trình.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved