ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 1.27 trang 37 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải các phương trình sau

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(2\tan x-3\cot x-2=0\)

Phương pháp giải:

Tìm ĐKXĐ của phương trình.

Sử dụng công thức \(\cot x=\dfrac{1}{\tan x}\) để rút gọn phương trình.

Lời giải chi tiết:

ĐKXĐ: \(\left\{ \begin{array}{l} \cos x\ne 0\\\sin x\ne 0 \end{array} \right. \)

Ta có: \(2\tan x-3\cot x-2=0\)

\(\Leftrightarrow 2\tan x-\dfrac{3}{\tan x}-2=0\)

\(\Rightarrow 2{\tan}^2 x-3-2\tan x=0\)

\(\Leftrightarrow \tan x=\dfrac{1\pm\sqrt{7}}{2} \)

\(\Leftrightarrow \left[ \begin{array}{l} x = \arctan{\left({\dfrac{1+\sqrt{7}}{2}}\right)}+k\pi ,k \in \mathbb{Z}\\x=\arctan{\left({\dfrac{1-\sqrt{7}}{2}}\right)}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

Các giá trị này thỏa mãn ĐKXĐ nên là nghiệm của phương trình.

LG b

\({\cos}^2 x=3\sin 2x+3\)

Phương pháp giải:

Sử dụng công thức nhân đôi để biến đổi phương trình.

Ta thấy \(\cos x=0\) không là nghiệm của phương trình nên ta chia hai vế của phương trình cho \({\cos}^2 x\) để rút gọn phương trình.

Sử dụng công thức \(1+{\tan}^2 x=\dfrac{1}{{\cos}^2 x}\).

Lời giải chi tiết:

Ta có: \({\cos}^2 x=3\sin 2x+3\)

\(\Leftrightarrow {\cos}^2 x=6\sin x\cos x+3 \)

Ta thấy \(\cos x=0\) không là nghiệm của phương trình.

Với \(\cos x\ne 0\) ta chia hai vế của phương trình cho \({\cos}^2 x\) ta được

\(1=6\tan x+\dfrac{3}{{\cos}^2 x}\)

\(\Leftrightarrow 1=6\tan x+3(1+{\tan}^2 x)\)

\(\Leftrightarrow 3{\tan}^2 x+6\tan x+2=0 \)

\(\Leftrightarrow \tan x=\dfrac{-3\pm\sqrt{3}}{3}\Leftrightarrow \)

\(\left[ \begin{array}{l} x = \arctan{\left({\dfrac{-3+\sqrt{3}}{3}}\right)}+k\pi ,k \in \mathbb{Z}\\x=\arctan{\left({\dfrac{-3-\sqrt{3}}{3}}\right)}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

Các giá trị này thỏa mãn ĐKXĐ nên là nghiệm của phương trình.

LG c

\(\cot x-\cot 2x=\tan x+1\)

Phương pháp giải:

Tìm ĐKXĐ của phương trình.

Sử dụng công thức \(\tan x=\dfrac{\sin x}{\cos x}\), \(\cot x=\dfrac{\cos x}{\sin x}\) và công thức nhân đôi để rút gọn phương trình.

Lời giải chi tiết:

ĐKXĐ:

\(\left\{ \begin{array}{l}
\sin x \ne 0\\
\sin 2x \ne 0\\
\cos x \ne 0
\end{array} \right. \) \(\Leftrightarrow \sin 2x \ne 0 \) \(\Leftrightarrow 2x \ne k\pi \) \(\Leftrightarrow x \ne \frac{{k\pi }}{2}\)

Ta có: \(\cot x-\cot 2x=\tan x+1\)

\(\Leftrightarrow \dfrac{\cos x}{\sin x}-\dfrac{\cos 2x}{\sin 2x}=\dfrac{\sin x}{\cos x}+1\)

\(\Leftrightarrow \dfrac{\cos x}{\sin x}-\dfrac{\cos 2x}{2\sin x\cos x}=\dfrac{\sin x}{\cos x}+1\)

\(\Rightarrow 2{\cos }^2 x-\cos 2x=2{\sin}^2 x+\sin 2x\)

\(\Leftrightarrow 2({\cos}^2 x-{\sin}^2 x)-\cos 2x=\sin 2x\)

\(\Leftrightarrow 2\cos 2x-\cos 2x=\sin 2x\)

\(\Leftrightarrow \cos 2x=\sin 2x\)

\(\begin{array}{l}
\Leftrightarrow \tan 2x = 1\\
\Leftrightarrow 2x = \frac{\pi }{4} + k\pi \\
\Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{2},k\in\mathbb{Z} 
\end{array}\)

Các giá trị này thỏa mãn ĐKXĐ nên là nghiệm của phương trình.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved