1. Nội dung câu hỏi
Cho tứ diện \(ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(AD\). Giao tuyến của hai mặt phẳng \(\left( {CMN} \right)\) và \(\left( {BCD} \right)\) là đường thẳng song song với đường thẳng nào sau đây?
A. \(BD\)
B. \(CD\)
C. \(BC\)
D. \(AB\)
2. Phương pháp giải
Chứng minh rằng \(MN\parallel BD\).
Sử dụng tính chất sau: Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó, hoặc trùng với một trong hai đường thẳng đó.
3. Lời giải chi tiết
Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AD\), nên \(MN\) là đường trung bình của tam giác \(ABD\). Suy ra \(MN\parallel BD\).
Xét hai mặt phẳng \(\left( {CMN} \right)\) và \(\left( {BCD} \right)\). Ta có \(C \in \left( {CMN} \right) \cap \left( {BCD} \right)\) nên tồn tại giao tuyến giữa hai mặt phẳng \(\left( {CMN} \right)\) và \(\left( {BCD} \right)\). Hơn nữa, do \(C \notin BD\) nên \(BD\) không là giao tuyến của hai mặt phẳng trên.
Ta thấy rằng, \(MN\parallel BD\), \(MN \subset \left( {CMN} \right)\), \(BD \subset \left( {BCD} \right)\), nên suy ra giao tuyến của hai mặt phẳng \(\left( {CMN} \right)\) và \(\left( {BCD} \right)\) song song hoặc trùng với \(BD\).
Nhưng do \(BD\) không là giao tuyến của hai mặt phẳng \(\left( {CMN} \right)\) và \(\left( {BCD} \right)\), nên giao tuyến của chúng song song với đường thẳng \(BD\).
Đáp án đúng là A.
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Phần hai. Địa lí khu vực và quốc gia
Bài 9: Tiết 1: Tự nhiên, dân cư và tình hình phát triển kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Unit 4: Planet Earth
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11