Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Bài tập ôn chương I. Phép nhân và phép chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Bài tập ôn chương II. Phân thức đại số
Quy đồng mẫu thức các phân thức:
LG a
\(\displaystyle {{25} \over {14{x^2}y}},{{14} \over {21x{y^5}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \( = 42{x^2}{y^5}\)
Nhân tử phụ thứ nhất là: \({3y^4}\)
Nhân tử phụ thứ hai là: \(2x\)
Quy đồng:
\(\displaystyle {{25} \over {14{x^2}y}} = {{25.{3y^4}} \over {14{x^2}y.{3y^4}}} = {{75{y^4}} \over {42{x^2}{y^5}}};\)
\(\displaystyle \frac{{14}}{{21x{y^5}}} = \frac{{14.2x}}{{21x{y^5}.2x}} = \frac{{28x}}{{42{x^2}{y^5}}}\)
LG b
\(\displaystyle {{11} \over {102{x^4}y}},{3 \over {34x{y^3}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \(= 102{x^4}{y^3}\)
Nhân tử phụ thứ nhất là: \(y^2\)
Nhân tử phụ thứ hai là: \(3{x^3}\).
Quy đồng:
\(\displaystyle{{11} \over {102{x^4}y}} = {{11.{y^2}} \over {102{x^4}y.{y^2}}} = {{11{y^2}} \over {102{x^4}{y^3}}}\);
\(\displaystyle {3 \over {34x{y^3}}} = {{3.3{x^3}} \over {34x{y^3}.3{x^3}}} = {{9{x^3}} \over {102{x^4}{y^3}}}\)
LG c
\(\displaystyle {{3x + 1} \over {12x{y^4}}},{{y - 2} \over {9{x^2}{y^3}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \(= 36{x^2}{y^4}\)
Nhân tử phụ thứ nhất là: \(3x\)
Nhân tử phụ thứ hai là: \(4y\)
Quy đồng:
\(\displaystyle {{3x + 1} \over {12x{y^4}}} = {{\left( {3x + 1} \right).3x} \over {12x{y^4}.3x}} = {{9{x^2} + 3x} \over {36{x^2}{y^4}}}\);
\(\displaystyle {{y - 2} \over {9{x^2}{y^3}}} = {{\left( {y - 2} \right).4y} \over {9{x^2}{y^3}.4y}} = {{4{y^2} - 8y} \over {36{x^2}{y^4}}}\)
LG d
\(\displaystyle {1 \over {6{x^3}{y^2}}},{{x + 1} \over {9{x^2}{y^4}}},{{x - 1} \over {4x{y^3}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \(= 36{x^3}{y^4}\)
Nhân tử phụ thứ nhất là: \(6{y^2}\)
Nhân tử phụ thứ hai là: \(4x\)
Nhân tử phụ thứ ba là: \(9{x^2}y\).
Quy đồng:
\(\displaystyle {1 \over {6{x^3}{y^2}}} = {{1.6{y^2}} \over {6{x^3}{y^2}.6{y^2}}} = {{6{y^2}} \over {36{x^3}{y^4}}}\);
\(\displaystyle {{x + 1} \over {9{x^2}{y^4}}} = {{\left( {x + 1} \right).4x} \over {9{x^2}{y^4}.4x}} = {{4{x^2} + 4x} \over {36{x^3}{y^4}}}\)
\(\displaystyle {{x - 1} \over {4x{y^3}}} = {{\left( {x - 1} \right).9{x^2}y} \over {4x{y^3}.9{x^2}y}} \)\(\,\displaystyle = {{9{x^3}y - 9{x^2}y} \over {36{x^3}{y^4}}}\)
LG e
\(\displaystyle {{3 + 2x} \over {10{x^4}y}},{5 \over {8{x^2}{y^2}}},{2 \over {3x{y^5}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \(= 120{x^4}{y^5}\)
Nhân tử phụ thứ nhất là: \(12{y^4}\)
Nhân tử phụ thứ hai là: \(15{x^2}{y^3}\)
Nhân tử phụ thứ ba là: \(40{x^3}\).
Quy đồng:
\(\displaystyle {{3 + 2x} \over {10{x^4}y}} = {{\left( {3 + 2x} \right).12{y^4}} \over {10{x^4}y.12{y^4}}}\)\(\,\displaystyle = {{36{y^4} + 24x{y^4}} \over {120{x^4}{y^5}}}\)
\(\displaystyle {5 \over {8{x^2}{y^2}}} = {{5.15{x^2}{y^3}} \over {8{x^2}{y^2}.15{x^2}{y^3}}} = {{75{x^2}{y^3}} \over {120{x^4}{y^5}}}\)
\(\displaystyle {2 \over {3x{y^5}}} = {{2.40{x^3}} \over {3x{y^5}.40{x^3}}} = {{80{x^3}} \over {120{x^4}{y^5}}}\)
LG f
\(\displaystyle {{4x - 4} \over {2x\left( {x + 3} \right)}},{{x - 3} \over {3x\left( {x + 1} \right)}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Ta có: \(\dfrac{{4x - 4}}{{2x\left( {x + 3} \right)}} = \dfrac{{4\left( {x - 1} \right)}}{{2x\left( {x + 3} \right)}} \)\(\,= \dfrac{{2\left( {x - 1} \right)}}{{x\left( {x + 3} \right)}}\)
MTC \(= 3x\left( {x + 3} \right)\left( {x + 1} \right)\)
Nhân tử phụ thứ nhất là: \(3\left( {x + 1} \right)\)
Nhân tử phụ thứ hai là: \((x+3)\)
Quy đồng:
\(\displaystyle {{4x - 4} \over {2x\left( {x + 3} \right)}} = {{2\left( {x - 1} \right)} \over {x\left( {x + 3} \right)}}\)\(\,\displaystyle = {{2\left( {x - 1} \right).3\left( {x + 1} \right)} \over {x\left( {x + 3} \right).3\left( {x + 1} \right)}} \)\(\,\displaystyle = {{6\left( {{x^2} - 1} \right)} \over {3x\left( {x + 3} \right)\left( {x + 1} \right)}}\)
\(\displaystyle{{x - 3} \over {3x\left( {x + 1} \right)}} = {{\left( {x - 3} \right)\left( {x + 3} \right)} \over {3x\left( {x + 1} \right)\left( {x + 3} \right)}} \)\(\,\displaystyle= {{{x^2} - 9} \over {3x\left( {x + 1} \right)\left( {x + 3} \right)}}\)
LG g
\(\displaystyle {{2x} \over {{{\left( {x + 2} \right)}^3}}},{{x - 2} \over {2x{{\left( {x + 2} \right)}^2}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
MTC \(= 2x{\left( {x + 2} \right)^3}\)
Nhân tử phụ thứ nhất là: \(2x\)
Nhân tử phụ thứ hai là: \((x+2)\).
Quy đồng:
\(\displaystyle {{2x} \over {{{\left( {x + 2} \right)}^3}}} = {{2x.2x} \over {2x{{\left( {x + 2} \right)}^3}}} \)\(\,\displaystyle = {{4{x^2}} \over {2x{{\left( {x + 2} \right)}^3}}}\)
\(\displaystyle {{x - 2} \over {2x{{\left( {x + 2} \right)}^2}}} = {{\left( {x - 2} \right)\left( {x + 2} \right)} \over {2x{{\left( {x + 2} \right)}^2}\left( {x + 2} \right)}} \)\(\,\displaystyle = {{{x^2} - 4} \over {2x{{\left( {x + 2} \right)}^3}}}\)
LG h
\(\displaystyle {5 \over {3{x^3} - 12x}},{3 \over {\left( {2x + 4} \right)\left( {x + 3} \right)}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
\(3{x^3} - 12x = 3x\left( {{x^2} - 4} \right)\)\(\,= 3x\left( {x - 2} \right)\left( {x + 2} \right)\)
\(\left( {2x + 4} \right)\left( {x + 3} \right) = 2\left( {x + 2} \right)\left( {x + 3} \right)\)
MTC = \(6x\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 3} \right)\)
Nhân tử phụ thứ nhất là: \(2\left( {x + 3} \right)\)
Nhân tử phụ thứ hai là: \(3x\left( {x - 2} \right)\).
Quy đồng:
\(\eqalign{ & {5 \over {3{x^3} - 12x}} = {5 \over {3x\left( {x - 2} \right)\left( {x + 2} \right)}} \cr&= {{5.2\left( {x + 3} \right)} \over {3x\left( {x - 2} \right)\left( {x + 2} \right).2\left( {x + 3} \right)}} \cr & = {{10\left( {x + 3} \right)} \over {6x\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} \cr & {3 \over {\left( {2x + 4} \right)\left( {x + 3} \right)}} \cr&= {3 \over {2\left( {x + 2} \right)\left( {x + 3} \right)}}\cr& = {{3.3x\left( {x - 2} \right)} \over {2\left( {x + 2} \right)\left( {x + 3} \right).3x\left( {x - 2} \right)}} \cr & = {{9x\left( {x - 2} \right)} \over {6x\left( {x + 2} \right)\left( {x - 2} \right)\left( {x + 3} \right)}} \cr} \)
Unit 9: Natural disasters
Bài 17: Nghĩa vụ tôn trọng, bảo vệ tài sản nhà nước và lợi ích công cộng
Bài 13. Tình hình phát triển kinh tế - xã hội khu vực Đông Á
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 8
CHƯƠNG II: VẬN ĐỘNG
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8