SBT Toán 8 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 13 - Mục Bài tập trang 82

1. Nội dung câu hỏi

Cho tam giác ABC có \(AB = 3cm,AC = 4cm,BC = 5cm.\) Lấy điểm D trên cạnh BC sao cho \(BD = 2cm.\) Lấy các điểm E, F trên các cạnh AB, AC sao cho DE, DF lần lượt vuông góc với AB, AC.

a) Chứng minh rằng $\Delta BDE\backsim \Delta DCF$

b) Tính độ dài đoạn thẳng AD.

 

2. Phương pháp giải

a) + Sử dụng kiến thức về định lý Pythagore đảo để chứng minh tam giác ABC vuông tại A: Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

+ Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

b) Sử dụng kiến thức định lí Pythagore để tính AD: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

 

3. Lời giải chi tiết

a) Tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\left( {do\;{3^2} + {4^2} = {5^2}} \right)\) nên tam giác ABC vuông tại A (định lí Pythagore đảo). Do đó, \(\widehat {BAC} = {90^0}\)

Vì DE, DF lần lượt vuông góc với AB, AC nên\(DE \bot AB,DF \bot AC\)

Do đó, \(\widehat {DFC} = \widehat {DFA} = \widehat {DEA} = \widehat {DEB} = {90^0}\)

Tứ giác AEDF có: \(\widehat {DFA} = \widehat {DEA} = \widehat {FAE} = {90^0}\) nên tứ giác AEDF là hình chữ nhật. Do đó, \(\widehat {FDE} = {90^0}\)

Mà \(\widehat {CDF} + \widehat {FDE} + \widehat {EDB} = {180^0}\) nên \(\widehat {CDF} + \widehat {EDB} = {90^0}\)

Tam giác BDE và tam giác DCF có:

\(\widehat {DEB} = \widehat {DFC} = {90^0},\widehat B = \widehat {FDC}\left( { = {{90}^0} - \widehat {EDB}} \right)\)

Do đó, $\Delta BDE\backsim \Delta DCF\left( g-g \right)$

b) Tam giác ABC có: DE//AC (cùng vuông góc với AB) nên  $\Delta BDE\backsim \Delta BCA$, do đó \(\frac{{BD}}{{BC}} = \frac{{ED}}{{AC}} = \frac{{EB}}{{AB}}\). Suy ra: \(\frac{{DE}}{4} = \frac{{EB}}{3} = \frac{2}{5}\)

Do đó: \(DE = \frac{8}{5}cm,EB = \frac{6}{5}cm \Rightarrow EA = \frac{9}{5}cm\)

Áp dụng định lí Pythagore vào tam giác AED vuông tại E có: \(A{D^2} = A{E^2} + E{D^2} = {\left( {\frac{9}{5}} \right)^2} + {\left( {\frac{8}{5}} \right)^2} = \frac{{29}}{5}\) nên \(AD = \sqrt {\frac{{29}}{5}} cm\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved