Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho tứ giác \(ABCD\) nội tiếp nửa đường tròn đường kính \(AD.\) Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(E .\) Kẻ \(EF\) vuông góc với \(AD.\) Gọi \(M\) là trung điểm của \(DE\). Chứng minh rằng:
a) Các tứ giác \(ABEF, DCEF\) nội tiếp được;
b) Tia \(CA\) là tia phân giác của góc \(BCF\);
c) Tứ giác \(BCMF\) nội tiếp được.
Phương pháp giải - Xem chi tiết
Sử dụng:
- Nếu tứ giác có tổng số đo hai góc đối diện bằng \(180^o\) thì tứ giác đó nội tiếp được đường tròn.
- Trên một đường tròn các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới cùng một góc \(\alpha\) thì nội tiếp được.
Lời giải chi tiết
a) Ta có \(\widehat {ABD} = \widehat {ACD} = {90^o}\) (góc nội tiếp chắn nửa đường tròn).
Tứ giác \(ABEF\) có \(\widehat {ABE} + \widehat {AFE} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(ABEF\) nội tiếp được.
Tứ giác \(DCEF\) có \(\widehat {DCE} + \widehat {DFE} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(DCEF\) nội tiếp được.
b) \(\widehat {{C_1}} = \widehat {{D_1}}\) (hai góc nội tiếp cùng chắn cung nhỏ \(AB\)) (1)
\(\widehat {{C_2}} = \widehat {{D_1}}\) (hai góc nội tiếp cùng chắn cung \(EF\) của đường tròn ngoại tiếp tứ giác \(DCEF\)) (2)
Từ (1) và (2) ta có \(\widehat {{C_1}} = \widehat {{C_2}}\).
Vậy \(CA\) là tia phân giác của góc \(BCF\).
c) \(\Delta DEF\) vuông tại \(F\) có \(FM\) là đường trung tuyến ứng với cạnh huyền nên \(FM=MD=ME=\dfrac{1}{2}DE\).
\( \Rightarrow \Delta DMF\) cân tại \(M\).
\(\Rightarrow \widehat {{D_1}} = \widehat {MFD}\) (tính chất tam giác cân).
\(\widehat {BMF}\) là góc ngoài tại đỉnh \(M\) của \(\Delta DMF\) nên:
\(\widehat {BMF} = \widehat {{D_1}} + \widehat {MFD} = 2\widehat {{D_1}}\) (3)
Theo câu b) ta có: \(\widehat {BCF} = \widehat {{C_1}} + \widehat {{C_2}} = 2\widehat {{D_1}}\) (4)
Từ (3) và (4) suy ra \(\widehat {BMF} =\widehat {BCF}\).
Vậy \(C\) và \(M\) cùng nhìn \(BF\) dưới một góc bằng nhau nên tứ giác \(BCMF\) nội tiếp được.
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Đề thi vào 10 môn Toán Hải Dương
PHẦN SINH VẬT VÀ MÔI TRƯỜNG
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG