1. Nội dung câu hỏi
Cho \(a > 0,{\rm{ }}b > 0\). Rút gọn mỗi biểu thức sau:
a) \(A = \frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}};\)
b) \(B = \frac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}}.\)
2. Phương pháp giải
Sử dụng các tính chất lũy thừa với số mũ hữu tỉ để rút gọn biểu thức.
3. Lời giải chi tiết
a) Ta có: \(A = \frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}} = \frac{{{a^3}{b^2}}}{{\sqrt[3]{{{a^6}{b^3}}}}} = \frac{{{a^3}{b^2}}}{{{a^2}b}} = ab.\)
b) Ta có: \(B = \frac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}} = \frac{{{a^{\frac{1}{3}}}{b^{\frac{1}{3}}}\left( {{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}} \right)}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}} = {a^{\frac{1}{3}}}{b^{\frac{1}{3}}}.\)
Một số tác giả, tác phẩm văn học tham khảo - Ngữ văn 11
Unit 3: Social Issues
CHƯƠNG 2: NITƠ - PHOTPHO
Chủ đề 1. Dao động
SGK Toán 11 - Cánh Diều tập 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11