Bài 14 trang 79 sách bài tập toán 10 - Cánh diều

Đề bài

Cho tam giác ABC có \(AB = 5,AC = 8,BC = 9\). Tính (làm tròn kết quả đến hàng phần mười)

a) Số đo các góc A, B, C

b) Diện tích tam giác ABC

Phương pháp giải - Xem chi tiết

Phương pháp

Bước 1: Sử dụng định lí cosin và tổng các góc trong tam giác để tính số đo các góc A, B, C

Bước 2: Sử dụng công thức diện tích \(S = \frac{1}{2}AB.AC\sin A\) để tính diện tích ∆ABC

Lời giải chi tiết

a) Áp dụng định lí cosin cho ∆ABC ta có:

 \(\left\{ \begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{5^2} + {8^2} - {9^2}}}{{2.5.8}} = \frac{1}{{10}}\\\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{5^2} + {9^2} - {8^2}}}{{2.5.9}} = \frac{7}{{15}}\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\widehat A \approx 84,{3^0}\\\widehat B \approx 62,{2^0}\end{array} \right.\)

Ta có: \(\widehat C = {180^0} - (\widehat A + \widehat B) = 33,{5^0}\)

b) \({S_{ABC}} = \frac{1}{2}AB.AC\sin A = \frac{1}{2}.5.8.\sin 84,{3^0} \approx 19,9\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved