PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 140 trang 97 SBT Toán 8 tập 1

Đề bài

Hình thoi \(ABCD\) có \(\widehat A = {60^0}\) . Trên cạnh \(AD\) lấy điểm \(M,\) trên cạnh \(DC\) lấy điểm \(N\) sao cho \(AM = DN.\) Tam giác \(BMN\) là tam giác gì ? Vì sao ?

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức : Tam giác cân có một góc bằng \(60^{\circ}\).

Lời giải chi tiết

 

Nối \(BD,\) ta có:

\(AB = AD=BC=BD\) (do ABCD là hình thoi) nên \(∆ ABD\) cân tại \(A\) 

Mà  \(\widehat A = {60^0}\)

Nên \(∆ ABD\) đều.

\( \Rightarrow \widehat {ABD} = {\widehat D_1} = {60^0}\)  và \(BD = AB\)

Suy ra: \(BD = BC = CD\)

Vậy \(∆ CBD\) đều.

\( \Rightarrow {\widehat D_2} = {60^0}\)

Xét \(∆ BAM\) và \(∆ BDN:\)

\(AB = BD\) (chứng minh trên)

\(\widehat A = {\widehat D_2} = {60^0}\)

\(AM = DN\) (giả thiết)

Do đó: \(∆ BAM = ∆ BDN \,(c.g.c)\) \( \Rightarrow {\widehat B_1} = {\widehat B_3}\)  và \(BM = BN\)

Suy ra: \(∆ BMN\) cân tại \(B\)

\({\widehat B_2} + {\widehat B_1} = \widehat {ABD} = {60^0}\)

Suy ra: \({\widehat B_2} + {\widehat B_3} = \widehat {MBN} = {60^0}\)

Vậy \(∆ BMN\) đều (tam giác cân có 1 góc bằng \(60^0\) là tam giác đều)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved