1. Nội dung câu hỏi
Hai bệnh nhân cùng nhiễm một loại virus. Xác suất biến chứng nặng của bệnh nhân thứ nhất và bệnh nhân thứ hai lần lượt là 0,2 và 0,25; khả năng bị biến chứng nặng của hai bệnh nhân là độc lập. Tính xác suất của các biến cố:
a) M: “Bệnh nhân thứ nhất và bệnh nhân thứ hai đều bị biến chứng nặng”;
b) N: “Bệnh nhân thứ nhất không bị biến chứng nặng và bệnh nhân thứ hai bị biến chứng nặng”;
c) Q: “Bệnh nhân thứ nhất bị biến chứng nặng và bệnh nhân thứ hai không bị biến chứng nặng”;
d) R: “Bệnh nhân thứ nhất và bệnh nhân thứ hai đều không bị biến chứng nặng”;
e) S: “Có ít nhất một trong hai bệnh nhân bị biến chứng nặng”.
2. Phương pháp giải
Sử dụng các quy tắc tính xác suất.
3. Lời giải chi tiết
Xét các biến cố A: “Bệnh nhân thứ nhất bị biến chứng nặng” và B: “Bệnh nhân thứ hai bị biến chứng nặng”.
Từ giả thiết, suy ra A, B là hai biến cố độc lập và \(P\left( A \right) = 0,2;{\rm{ }}P\left( B \right) = 0,25.\)
\( \Rightarrow P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,2 = 0,8;{\rm{ }}P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,25 = 0,75.\)
a) Do \(M = A \cap B \Rightarrow P\left( M \right) = P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right) = 0,2.0,25 = 0,05.\)
b) Ta thấy \(N = \bar A \cap B \Rightarrow P\left( N \right) = P\left( {\bar A \cap B} \right) = P\left( {\bar A} \right).P\left( B \right) = 0,8.0,25 = 0,2.\)
c) Ta thấy \(Q = A \cap \bar B \Rightarrow P\left( Q \right) = P\left( {A \cap \bar B} \right) = P\left( A \right).P\left( {\bar B} \right) = 0,2.0,75 = 0,15.\)
d) Ta thấy \(R = \bar A \cap \bar B \Rightarrow P\left( R \right) = P\left( {\bar A \cap \bar B} \right) = P\left( {\bar A} \right).P\left( {\bar B} \right) = 0,8.0,75 = 0,6.\)
e) Ta thấy \(S = A \cup B.\)
\( \Rightarrow P\left( S \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) = 0,2 + 0,25 - 0,05 = 0,4.\)
Tải 10 đề thi học kì 2 Sinh 11
Chương III. Các phương pháp gia công cơ khí
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Chương 1: Dao động
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11