Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Đồ thị của hàm số \(y = \sqrt 3 x + \sqrt 3 \) được vẽ bằng compa và thước thẳng (h.10a).
Hãy tìm hiểu cách vẽ đó rồi nêu lại các bước thực hiện.
Áp dụng. Vẽ đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \) bằng compa và thước thẳng.
Hướng dẫn. Cách tìm điểm \(\sqrt 5 \) trên trục Ox (xem hình 10b).
Vẽ hình chữ nhật có một đỉnh là O, cạnh là 1 đơn vị và 2 đơn vị.
Đường chéo của hình chữ nhật là OC có độ dài bằng \(\sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Lấy O làm tâm, quay cung tròn bán kính \(OC = \sqrt 5 \), ta xác định được điểm \(A\left( {0\,;\,\sqrt 5 } \right)\)
Phương pháp giải - Xem chi tiết
+) Xác định hai điểm thuộc đồ thị hàm số \(y=ax+b(a \ne 0)\):
Cho \(x=0 \Rightarrow y=b \Rightarrow A(0; b).\)
Cho \(y=0 \Rightarrow x = -\dfrac{b}{a} \Rightarrow B {\left(-\dfrac{b}{a};0 \right)}.\)
Xác định vị trí hai điểm \(A,\ B\) trên mặt phẳng tọa độ. Đường thẳng đi qua \(A,\ B\) là đồ thị hàm số \(y=ax+b.\)
+) Định lí Py-ta-go trong tam giác vuông: Cho tam giác \(ABC\) vuông tại \(A\). Khi đó:
\(BC^2=AB^2+AC^2\).
Lời giải chi tiết
* Cách vẽ đồ thị hàm số \(y = \sqrt 3 x + \sqrt 3 \)
+ Gọi \(A\left( {1;1} \right)\) thì \(OA = \sqrt {{1^2} + {1^2}} = \sqrt 2 \)
+ Lấy điểm C trên Ox có tọa độ \(C\left( {\sqrt 2 ;0} \right)\) và gọi \(B\left( {\sqrt 2 ;1} \right)\). Khi đó \(OB = \sqrt {{{\left( {\sqrt 2 } \right)}^2} + {1^2}} = \sqrt 3 \)
Dùng compa dựng cung tròn \(O\left( {0;\sqrt 3 } \right)\) cắt trục tung tại điểm có tọa độ \((0;\sqrt 3)\)
Đồ thị hàm số \(y = \sqrt 3 x + \sqrt 3 \) là đường thẳng qua hai điểm có tọa độ \(\left( {0;\sqrt 3 } \right)\) và \(\left( { - 1;0} \right)\)
* Vẽ đồ thị hàm số \(y = \sqrt 5 x + \sqrt 5 \) (làm tương tự như trên)
Cho \(x= 0 \Rightarrow y = \sqrt 5 . 0 + \sqrt 5 = \sqrt 5 \Rightarrow B(0; \sqrt 5)\).
Cho \(x= -1 \Rightarrow y = \sqrt 5 . (-1) + \sqrt 5 = 0 \Rightarrow C(-1; 0)\).
Bước \(1\): Xác định điểm \(C(2; 1)\) trên mặt phẳng tọa độ \(Oxy\).
Áp dụng định lí Py-ta-go, ta có:
\(OC^2=2^2+1^2=4+1=5 \Leftrightarrow OC= \sqrt 5\)
Bước \(2\): Vẽ cung tròn tâm \(O\) bán kính \(OC=\sqrt 5\). Cung tròn này cắt trục \(Oy\) tại vị trí điểm \(A\) có tung độ là \(\sqrt 5\). Ta xác định được điểm \(A\).
Bước \(3\): Kẻ đường thẳng đi qua hai điểm \(A(0; \sqrt 5)\) và \((-1; 0)\) ta được đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \).
Hình vẽ:
Đề thi giữa kì 2 - Sinh 9
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Ngữ văn lớp 9
Bài 15. Thương mại và du lịch
TÀI LIỆU DẠY - HỌC HÓA 9 TẬP 2
Đề thi vào 10 môn Văn Sơn La