Bài 1.52 trang 25 SBT giải tích 12

Đề bài

Tiệm cận đứng và ngang của đồ thị hàm số \(y =  - \dfrac{3}{{x - 2}}\) là:

A. \(x = 2,y = 0\)                 B. \(x = 0,y = 2\)

C. \(x = 1,y = 1\)                 D. \(x =  - 2,y =  - 3\)

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết:

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{3}{{x - 2}}} \right) =  - \infty \) nên \(x = 2\) là đường tiệm cận đứng.

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \dfrac{3}{{x - 2}}} \right) = 0\) nên \(y = 0\) là đường tiệm cận ngang.

Chọn A.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved