Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Khẳng định nào sau đây là đúng?
A. Đường tròn là hình có vô số trục đối xứng
B. Một hình có vô số trục đối xứng thì hình đó phải là đường tròn.
C. Một hình có vô số trục đối xứng thì hình đó phải là hình gồm những đường tròn đồng tâm.
D. Một hình có vô số trục đối xứng thì hình đó phải là hình gồm hai đường thẳng vuông góc.
Phương pháp giải - Xem chi tiết
Nhận xét tính đúng sai của các đáp án, chú ý chỉ ra phản ví dụ.
Lời giải chi tiết
Đáp án A: Đúng vì trục đối xứng của đường tròn là đường kính, mà đường tròn có vô số đường kính nên có vô số trục đối xứng.
Đáp án B, C sai vì một hình có vô số trục đối xứng ngoài đường tròn, hai đường tròn đồng tâm ra thì còn có đường thẳng và nhiều hình khác.
Đáp án D sai vì hai đường thẳng vuông góc chỉ có \(4\) trục đối xứng chứ không phải có vô số trục đối xứng.
Chọn A.
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2
Unit 12: Celebrations
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Chuyên đề 11.3: Cuộc Cách mạng công nghiệp lần thứ tư (4.0)
Chương 4: Hydrocarbon
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11