Đề bài
Cho phương trình \(8{\sin}^6 x={\sin}^2 2x\).
Xét các giá trị
\((I) k\pi\)
\((II) \dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
\((III)\dfrac{\pi}{2}+k\pi\)
\((k\in\mathbb{Z})\).
Trong các giá trị trên, giá trị nào là nghiệm của phương trình đã cho?
A. Chỉ \((I)\)
B. Chỉ \((II)\)
C. Chỉ \((III)\)
D. \((I)\) và \((II)\).
Phương pháp giải - Xem chi tiết
Giải phương trình bằng cách
- Sử dụng công thức nhân đôi \(\sin 2x=2\sin x\cos x\)
- Nhóm nhân tử chung
Giải phương trình dạng \(\sin x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là
\(x=\arcsin a+k2\pi ,k \in \mathbb{Z}\)
và \(x=\pi-\arcsin a+k2\pi ,k \in \mathbb{Z}\).
Lời giải chi tiết
Ta có: \(8{\sin}^6 x={\sin}^2 2x\)
\(\begin{array}{l}
\Leftrightarrow 8{\sin ^6}x - {\sin ^2}2x = 0\\
\Leftrightarrow 8{\sin ^6}x - 4{\sin ^2}x{\cos ^2}x = 0\\
\Leftrightarrow 4{\sin ^2}x\left( {2{{\sin }^4}x - {{\cos }^2}x} \right) = 0\\
\Leftrightarrow 4{\sin ^2}x\left[ {2{{\sin }^4}x - \left( {1 - {{\sin }^2}x} \right)} \right] = 0
\end{array}\)
\(\Leftrightarrow 4{\sin}^2 x(2{\sin}^4 x+{\sin}^2 x-1)=0\)
\( \Leftrightarrow \left[ \begin{array}{l}{\sin}^2 x = 0\\2{\sin}^4 x+{\sin}^2 x-1=0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l} x = k\pi,k\in\mathbb{Z}\\{\sin}^2 x=\dfrac{1}{2}\\{\sin}^2 x=-1\le 0\text{(loại)}\end{array} \right.\)
Với: \({\sin}^2 x=\dfrac{1}{2}\)
\(\Leftrightarrow \dfrac{1-\cos 2x}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow \cos 2x=0\)
\(\Leftrightarrow 2x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\)
Vậy phương trình có nghiệm là \(x=k\pi,k\in\mathbb{Z}\) và \(x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\)
Đáp án: D.
Đề minh họa số 4
SGK Ngữ Văn 11 - Cánh Diều tập 2
Unit 4: Preserving World Heritage
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
Unit 14: Recreation - Sự giải trí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11