PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 16 trang 52 SBT toán 8 tập 2

Đề bài

Cho \(m < n\), chứng tỏ :

a) \(4m + 1 < 4n + 5;\)

b) \(3 – 5m > 1 – 5n.\)

Phương pháp giải - Xem chi tiết

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng; tính chất bắc cầu.

Lời giải chi tiết

a)  Vì \(m < n \Rightarrow 4m < 4n\) 

\(\, \Rightarrow 4m + 1 < 4n + 1\)      \((1)\)

Vì \(1 < 5 \Rightarrow 4n + 1 < 4n + 5\)      \((2)\)

Theo tính chất bắc cầu, từ \((1)\) và \((2)\) suy ra: \(4m + 1 < 4n + 5.\)

b) Vì \(m < n \Rightarrow  - 5m >  - 5n\)

\(\, \Rightarrow 1 - 5m > 1 - 5n\)   \((3)\)

Vì \(3 > 1 \Rightarrow 3 - 5m > 1 - 5m\)  \((4)\)

Theo tính chất bắc cầu, từ \((3)\) và \((4)\) suy ra: \(3 - 5m > 1 - 5n\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved