Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho đường tròn \((O)\) và hai dây \(AB, AC\) bằng nhau. Qua \(A\) vẽ một cát tuyến cắt dây \(BC\) ở \(D\) và cắt đường tròn \((O)\) ở \(E.\) Chứng minh rằng \(A{B^2} = AD.AE.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Với hai cung nhỏ trong một đường tròn, hai dây bằng nhau căng hai cung bằng nhau.
+) Trong một đường tròn, góc nội tiếp chắn các cung bằng nhau thì bằng nhau.
Lời giải chi tiết
Vì \(AB = AC\;\; (gt)\)
Nên \(\overparen{AB} = \overparen{AC}\) (hai dây bằng nhau căng \(2\) cung bằng nhau)
\( \Rightarrow \widehat {ABC} = \widehat {AEB}\) (\(2\) góc nội tiếp chắn \(2\) cung bằng nhau)
Xét \(∆ABD\) và \(∆ABE:\)
+) \(\widehat A\) chung
+) \(\widehat {ABD}=\widehat {ABC} = \widehat {AEB}\) (chứng minh trên)
Suy ra: \(∆ABD\) đồng dạng \(∆AEB\) (g-g)
\(\Rightarrow \displaystyle {{AE} \over {AB}} = {{AB} \over {AD}}\)\( \Rightarrow {\rm A}{{\rm B}^2} = AD.AE\).
Bài 33
Đề thi học kì 1
Đề thi vào 10 môn Văn An Giang
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 9
CHƯƠNG IV. SỰ BẢO TOÀN VÀ CHUYỂN HÓA NĂNG LƯỢNG