1. Nội dung câu hỏi
Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.
2. Phương pháp giải
Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'} = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.
3. Lời giải chi tiết
⦁ Ta xét Hình 4a:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.
Suy ra \(\overrightarrow {OA'} = k\overrightarrow {OA} \), với k > 0.
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right){\rm{ }} = {\rm{ }}A',{\rm{ }}OA'{\rm{ }} = {\rm{ }}k.OA.\)
Vì vậy \(k = \frac{{OA'}}{{OA}}\)
Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:
\(\widehat {AOB}\) chung;
\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)
Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,\,(g.g)\)
Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = k\)
Vì vậy \(OB' = {\rm{ }}k.OB.\)
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm cùng phía đối với O.
Suy ra \(\overrightarrow {OB'} = k\overrightarrow {OB} \)
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right){\rm{ }} = {\rm{ }}B'.\)
Vậy phép vị tự tâm O, tỉ số \(k = \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.
⦁ Ta xét Hình 4b:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm khác phía đối với O.
Suy ra \(\overrightarrow {OA'} = k\overrightarrow {OA} \) với k < 0.
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right) = A',{\rm{ }}OA' = \left| k \right|.OA.\)
Vì vậy \(k = - \frac{{OA'}}{{OA}}\)
Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:
\(\widehat {A'OB'} = \widehat {AOB}\) (đối đỉnh);
\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)
Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,(g.g)\)
Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = |k|\)
Vì vậy \(\;OB'{\rm{ }} = {\rm{ }}\left| k \right|.OB.\)
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm khác phía đối với O.
Suy ra \(\overrightarrow {OB'} = k\overrightarrow {OB} \)
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right) = B'.\)
Vậy phép vị tự tâm O, tỉ số \(k = - \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11
PHẦN BA. LỊCH SỬ VIỆT NAM (1858 - 1918)
Chương II. Công nghệ giống vật nuôi
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chương 2: Nitrogen và sulfur
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11