PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 17 trang 62 Vở bài tập toán 8 tập 1

Đề bài

Cho hai phân thức:

\(\dfrac{1}{{{x^2} + 3x - 10}},\;\dfrac{x}{{{x^2} + 7x + 10}}\)

Không dùng cách phân tích các mẫu thức thành nhân tử, hãy chứng tỏ rằng có thể quy đồng mẫu thức hai phân thức này với mẫu thức chung là

\({x^3} + 5{x^2} - 4x - 20\)

Phương pháp giải - Xem chi tiết

Để chứng tỏ rằng có thể chọn đa thức  \({x^3} + 5{x^2} - 4x - 20\) làm mẫu thức chung ta chỉ cần chứng tỏ rằng nó chia hết cho mẫu thức của mỗi phân thức đã cho.

Lời giải chi tiết

Để chứng tỏ rằng có thể chọn \({x^3} + 5{x^2} - 4x - 20\) làm mẫu thức chung ta có thể chia đa thức này cho mẫu thức của mỗi phân thức đã cho để tìm nhân tử phụ.

Nhân tử phụ của mẫu thứ nhất là: \((x+2)\)

Nhân tử phụ của mẫu thứ hai là: \((x-2)\)

Vậy:

\(\dfrac{1}{{{x^2} + 3x - 10}} \)\(\,= \dfrac{{1.\left( {x + 2} \right)}}{{\left( {{x^2} + 3x - 10} \right)\left( {x + 2} \right)}}\)\(\,= \dfrac{{x + 2}}{{{x^3} + 5{x^2} - 4x - 20}}\)

\(\dfrac{x}{{{x^2} + 7x + 10}}\)\(\,= \dfrac{{x\left( {x - 2} \right)}}{{\left( {{x^2} + 7x + 10} \right)\left( {x - 2} \right)}}\)\(\,= \dfrac{{{x^2} - 2x}}{{{x^3} + 5{x^2} - 4x - 20}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved