PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 17 trang 7 SBT toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Chứng tỏ rằng các phương trình sau đây vô nghiệm :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(2\left( {x + 1} \right) = 3 + 2x\)

Phương pháp giải:

Áp dụng quy tắc chuyển vế và quy tắc nhân để giải các phương trình, từ đó tìm được tập nghiệm của phương trình.

Lời giải chi tiết:

Ta có: \(2\left( {x + 1} \right) = 3 + 2x\)

\( \Leftrightarrow 2x + 2 = 3 + 2x\)

\( \Leftrightarrow 2x-2x = 3 - 2\)

\(\Leftrightarrow 0x = 1\) (Vô lí)

Vậy phương trình vô nghiệm.

LG b

\(2\left( {1 - 1,5x} \right) + 3x = 0\)

Phương pháp giải:

Áp dụng quy tắc chuyển vế và quy tắc nhân để giải các phương trình, từ đó tìm được tập nghiệm của phương trình.

Lời giải chi tiết:

Ta có: \(2\left( {1 - 1,5x} \right) + 3x = 0\)

\( \Leftrightarrow 2 - 3x + 3x = 0 \Leftrightarrow 2 + 0x = 0\) (Vô lí)

Vậy phương trình vô nghiệm.

LG c

\(\left| x \right| =  - 1\)

Phương pháp giải:

Áp dụng tính chất : \(\left| x \right| \ge 0\) với mọi \(x\in\mathbb R.\)

Lời giải chi tiết:

Ta có \(VT=\left| x \right| \ge 0\) với mọi \(x\in\mathbb R.\) Mà \(VP=-1<0\)

Do đó phương trình \(\left| x \right| =  - 1\) vô nghiệm.

(Với VT là vế trái, VP là vế phải)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved