Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\), vẽ đường cao \(AH\). Chu vi của tam giác \(ABH\) là \(30cm\) và chu vi của tam giác \(ACH\) là \(40cm\). Tính chu vi của tam giác \(ABC.\)
Phương pháp giải - Xem chi tiết
Áp dụng định lí Pytago trong tam giác vuông \(ABC\):
Cho tam giác \(ABC\) vuông tại \(A\) thì ta có:
\(B{C^2} = A{C^2} + A{B^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}}\)
\(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{{{a^2}}}{{{b^2}}} = \dfrac{{{c^2}}}{{{d^2}}} = \dfrac{{{a^2} + {c^2}}}{{{b^2} + {d^2}}}\)
Lưu ý: Tỉ số đồng dạng của hai tam giác bằng tỉ số chu vi của hai tam giác đó.
Lời giải chi tiết
Gọi \(a, b, c\) lần lượt là chu vi của các tam giác \(ABC\), \(ABH\), \(ACH\).
Ta có: \(b = 30cm,c = 40cm.\)
Xét hai tam giác vuông \(AHB\) và \(CHA\), ta có:
\(\widehat {AHB} = \widehat {CHA} = 90^\circ \)
\(\widehat {ABH} = \widehat {CAH}\) (hai góc cùng phụ \(\widehat {ACB}\))
Vậy \(\Delta AHB\) đồng dạng \(\Delta CHA\) (g.g)
Suy ra: \(\dfrac{{HB}}{{HA}} = \dfrac{{HA}}{{HC}}\)\( = \dfrac{{BA}}{{AC}} = \dfrac{{HB + HA + BA} }{{HA + HC + AC}} = \dfrac{b}{c}\)
Suy ra: \(\dfrac{{BA}}{{AC}} = \dfrac{b}{c} = \dfrac{{30}}{{40}} = \dfrac{3}{4}\)
Suy ra: \(\dfrac{{BA}}{3} = \dfrac{{AC}}{4}\)\( \Rightarrow \dfrac{{B{A^2}}}{9} = \dfrac{{A{C^2}}}{{16}} = \dfrac{{B{A^2} + A{C^2}}}{{9 + 16}}\)\( = \dfrac{{B{A^2} + A{C^2}}}{{25}}\)
Áp dụng định lí Pytago vào tam giác vuông \(ABC\), ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
Suy ra:
\(\dfrac{{B{A^2}}}{9} = \dfrac{{A{C^2}}}{{16}} = \dfrac{{B{C^2}}}{{25}}\)\( \Rightarrow \dfrac{{BA} }{3} = \dfrac{{AC}}{ 4} = \dfrac{{BC}}{5}\)
Xét hai tam giác vuông \(AHB\) và \(CAB\), ta có:
\(\widehat {CAB} = \widehat {CHA} = 90^\circ \)
\(\widehat {C} \) chung
Nên \(\Delta CAB\) đồng dạng \(\Delta CHA\) (g.g)
Suy ra các tam giác \(ABH, CAH, CBA\) đồng dạng với nhau nên:
\(b:c:a = BA:AC:BC = 3:4:5\)
Suy ra: \(\dfrac{b}{3} = \dfrac{c}{ 4} = \dfrac{a}{5} \Leftrightarrow \dfrac{{30}}{3} = \dfrac{{40}}{4} = \dfrac{a}{5}\)\( \Rightarrow a = \dfrac{{30}}{3}.5 = 50\left( {cm} \right)\)
Bài 24
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2
Đề thi vào 10 môn Toán Sóc Trăng
CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI
PHẦN HÌNH HỌC - TOÁN 9 TẬP 1