Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Tìm các trục đối xứng của hình vuông.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất: Nếu một đa giác có trục đối xứng \(d\) thì qua phép đối xứng trục \(d\) mỗi đỉnh của nó phải biến thành một đỉnh của đa giác, mỗi cạnh của nó phải biến thành một cạnh của đa giác bằng cạnh ấy.
Lời giải chi tiết
Cho hình vuông \(ABCD\). Gọi \(F\) là phép đối xứng trục \(d\) biến hình vuông đó thành chính nó. Lí luận tương tự, ta thấy \(A\) chỉ có thể biến thành các điểm \(A\), \(B\), \(C\) hoặc \(D\).
- Nếu \(A\) biến thành chính nó thì \(C\) chỉ có thể biến thành chính nó và \(B\) biến thành \(D\). Từ đó suy ra \(F\) là phép đối xứng qua trục \(AC\).
- Nếu \(B\) biến thành chính nó thì \( D\) chỉ có thể biến thành chính nó và \(A\) biến thành \(C\). Từ đó suy ra \(F\) là phép đối xứng qua trục \(BD\).
- Nếu \(A\) biến thành \(B\) thì \(d\) là đường trung trực của \(AB\). Khi đó \(C\) biến thành \(D\).
- Nếu \( B\) biến thành \(C\) thì \(d\) là đường trung trực của \(BC\). Khi đó \(A\) biến thành \(D\).
Do đó hình vuông \(ABCD\) có bốn trục đối xứng là các đường thẳng \(AC\), \(BD\) và các đường trung trực của \(AB\) và \(BC\).
Chủ đề 2: Kĩ thuật di chuyển
CHƯƠNG II. CẢM ỨNG
Unit 2: Generation gap
Tải 10 đề thi học kì 2 Sinh 11
Unit 1: Generation gap and Independent life
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11